Assembling Artificial Photosynthetic Models in Water Using β‐Cyclodextrin‐Conjugated Phthalocyanines as Building Blocks

Two water‐soluble zinc(II) phthalocyanines substituted with two or four permethylated β‐cyclodextrin (β‐CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β‐CD moieties not only can increa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2023-06, Vol.29 (36), p.e202300709-n/a
Hauptverfasser: Chen, Xiao‐Fei, Gobeze, Habtom B., D'Souza, Francis, P. Ng, Dennis K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e202300709
container_title Chemistry : a European journal
container_volume 29
creator Chen, Xiao‐Fei
Gobeze, Habtom B.
D'Souza, Francis
P. Ng, Dennis K.
description Two water‐soluble zinc(II) phthalocyanines substituted with two or four permethylated β‐cyclodextrin (β‐CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β‐CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2‐anthraquinonesulfonate (AQ) in water through host–guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady‐state and time‐resolved spectroscopic methods. In the ternary complexes, the ZnTPPS units serve as light‐harvesting antennas to capture the light energy and transfer it to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is subsequently quenched by the electron‐deficient AQ units through electron transfer. Femtosecond transient absorption spectroscopy provides clear evidence for the singlet‐singlet energy transfer from the photo‐excited ZnTPPS to the phthalocyanine core with a rate constant (kENT) in the order of 109 s−1. The population of phthalocyanine radical cations indicates the occurrence of electron transfer from the excited phthalocyanine to the AQ moieties, forming a charge‐separated state. β‐Cyclodextrin‐conjugated zinc(II) phthalocyanines form stable host–guest complexes with a tetrasulfonated porphyrin and sodium 2‐anthraquinonesulfonate (AQ) in water. Upon excitation of the porphyrin unit, they undergo excitation energy transfer followed by electron transfer as shown by various spectroscopic methods, functioning as artificial photosynthetic models.
doi_str_mv 10.1002/chem.202300709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2792502705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830460924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-dc5134f81bf7dffa0e505e832e20cc016a4293c24ff044669e8a6a975b9daae33</originalsourceid><addsrcrecordid>eNqFkc1u1DAQxy0EotvClSOKxIVLlvFHPnzcrkpbqRUcqDhaXmfS9eLYxU4EkXroI_AsPAgPwZM00ZYiceE0mpnf_DTSn5BXFJYUgL0zW-yWDBgHqEA-IQtaMJrzqiyekgVIUeVlweUBOUxpBwCy5Pw5OeClrGsq6wW5XaWE3cZZf52tYm9ba6x22cdt6EMafb_F3prsMjToUmZ99ln3GLOrNPO_fv6--7EejZu23_to_dwGvxuuJ6iZHP1Wu2BG7a3HlOmUHQ_WNfPp8TT_kl6QZ612CV8-1CNy9f7k0_osv_hwer5eXeRGUC7zxhSUi7amm7Zq2lYDFlBgzRkyMAZoqQWT3DDRtiBEWUqsdallVWxkozVyfkTe7r03MXwdMPWqs8mgc9pjGJJilWQFsAqKCX3zD7oLQ_TTd4rVHEQJkomJWu4pE0NKEVt1E22n46goqDkXNeeiHnOZDl4_aIdNh80j_ieICZB74Jt1OP5Hp9ZnJ5d_5ffgk54v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830460924</pqid></control><display><type>article</type><title>Assembling Artificial Photosynthetic Models in Water Using β‐Cyclodextrin‐Conjugated Phthalocyanines as Building Blocks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Xiao‐Fei ; Gobeze, Habtom B. ; D'Souza, Francis ; P. Ng, Dennis K.</creator><creatorcontrib>Chen, Xiao‐Fei ; Gobeze, Habtom B. ; D'Souza, Francis ; P. Ng, Dennis K.</creatorcontrib><description>Two water‐soluble zinc(II) phthalocyanines substituted with two or four permethylated β‐cyclodextrin (β‐CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β‐CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2‐anthraquinonesulfonate (AQ) in water through host–guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady‐state and time‐resolved spectroscopic methods. In the ternary complexes, the ZnTPPS units serve as light‐harvesting antennas to capture the light energy and transfer it to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is subsequently quenched by the electron‐deficient AQ units through electron transfer. Femtosecond transient absorption spectroscopy provides clear evidence for the singlet‐singlet energy transfer from the photo‐excited ZnTPPS to the phthalocyanine core with a rate constant (kENT) in the order of 109 s−1. The population of phthalocyanine radical cations indicates the occurrence of electron transfer from the excited phthalocyanine to the AQ moieties, forming a charge‐separated state. β‐Cyclodextrin‐conjugated zinc(II) phthalocyanines form stable host–guest complexes with a tetrasulfonated porphyrin and sodium 2‐anthraquinonesulfonate (AQ) in water. Upon excitation of the porphyrin unit, they undergo excitation energy transfer followed by electron transfer as shown by various spectroscopic methods, functioning as artificial photosynthetic models.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202300709</identifier><identifier>PMID: 36988198</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Cations ; Chemistry ; Construction ; Cyclodextrin ; Cyclodextrins ; Electron transfer ; Energy transfer ; host–guest interactions ; Photosynthesis ; photosynthetic models ; phthalocyanines ; Porphyrins ; Zinc</subject><ispartof>Chemistry : a European journal, 2023-06, Vol.29 (36), p.e202300709-n/a</ispartof><rights>2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-dc5134f81bf7dffa0e505e832e20cc016a4293c24ff044669e8a6a975b9daae33</citedby><cites>FETCH-LOGICAL-c4139-dc5134f81bf7dffa0e505e832e20cc016a4293c24ff044669e8a6a975b9daae33</cites><orcidid>0000-0003-3815-8949 ; 0000-0001-9087-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202300709$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202300709$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36988198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiao‐Fei</creatorcontrib><creatorcontrib>Gobeze, Habtom B.</creatorcontrib><creatorcontrib>D'Souza, Francis</creatorcontrib><creatorcontrib>P. Ng, Dennis K.</creatorcontrib><title>Assembling Artificial Photosynthetic Models in Water Using β‐Cyclodextrin‐Conjugated Phthalocyanines as Building Blocks</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Two water‐soluble zinc(II) phthalocyanines substituted with two or four permethylated β‐cyclodextrin (β‐CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β‐CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2‐anthraquinonesulfonate (AQ) in water through host–guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady‐state and time‐resolved spectroscopic methods. In the ternary complexes, the ZnTPPS units serve as light‐harvesting antennas to capture the light energy and transfer it to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is subsequently quenched by the electron‐deficient AQ units through electron transfer. Femtosecond transient absorption spectroscopy provides clear evidence for the singlet‐singlet energy transfer from the photo‐excited ZnTPPS to the phthalocyanine core with a rate constant (kENT) in the order of 109 s−1. The population of phthalocyanine radical cations indicates the occurrence of electron transfer from the excited phthalocyanine to the AQ moieties, forming a charge‐separated state. β‐Cyclodextrin‐conjugated zinc(II) phthalocyanines form stable host–guest complexes with a tetrasulfonated porphyrin and sodium 2‐anthraquinonesulfonate (AQ) in water. Upon excitation of the porphyrin unit, they undergo excitation energy transfer followed by electron transfer as shown by various spectroscopic methods, functioning as artificial photosynthetic models.</description><subject>Absorption spectroscopy</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Construction</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Electron transfer</subject><subject>Energy transfer</subject><subject>host–guest interactions</subject><subject>Photosynthesis</subject><subject>photosynthetic models</subject><subject>phthalocyanines</subject><subject>Porphyrins</subject><subject>Zinc</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1u1DAQxy0EotvClSOKxIVLlvFHPnzcrkpbqRUcqDhaXmfS9eLYxU4EkXroI_AsPAgPwZM00ZYiceE0mpnf_DTSn5BXFJYUgL0zW-yWDBgHqEA-IQtaMJrzqiyekgVIUeVlweUBOUxpBwCy5Pw5OeClrGsq6wW5XaWE3cZZf52tYm9ba6x22cdt6EMafb_F3prsMjToUmZ99ln3GLOrNPO_fv6--7EejZu23_to_dwGvxuuJ6iZHP1Wu2BG7a3HlOmUHQ_WNfPp8TT_kl6QZ612CV8-1CNy9f7k0_osv_hwer5eXeRGUC7zxhSUi7amm7Zq2lYDFlBgzRkyMAZoqQWT3DDRtiBEWUqsdallVWxkozVyfkTe7r03MXwdMPWqs8mgc9pjGJJilWQFsAqKCX3zD7oLQ_TTd4rVHEQJkomJWu4pE0NKEVt1E22n46goqDkXNeeiHnOZDl4_aIdNh80j_ieICZB74Jt1OP5Hp9ZnJ5d_5ffgk54v</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Chen, Xiao‐Fei</creator><creator>Gobeze, Habtom B.</creator><creator>D'Souza, Francis</creator><creator>P. Ng, Dennis K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3815-8949</orcidid><orcidid>https://orcid.org/0000-0001-9087-960X</orcidid></search><sort><creationdate>20230627</creationdate><title>Assembling Artificial Photosynthetic Models in Water Using β‐Cyclodextrin‐Conjugated Phthalocyanines as Building Blocks</title><author>Chen, Xiao‐Fei ; Gobeze, Habtom B. ; D'Souza, Francis ; P. Ng, Dennis K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-dc5134f81bf7dffa0e505e832e20cc016a4293c24ff044669e8a6a975b9daae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Construction</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Electron transfer</topic><topic>Energy transfer</topic><topic>host–guest interactions</topic><topic>Photosynthesis</topic><topic>photosynthetic models</topic><topic>phthalocyanines</topic><topic>Porphyrins</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao‐Fei</creatorcontrib><creatorcontrib>Gobeze, Habtom B.</creatorcontrib><creatorcontrib>D'Souza, Francis</creatorcontrib><creatorcontrib>P. Ng, Dennis K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiao‐Fei</au><au>Gobeze, Habtom B.</au><au>D'Souza, Francis</au><au>P. Ng, Dennis K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembling Artificial Photosynthetic Models in Water Using β‐Cyclodextrin‐Conjugated Phthalocyanines as Building Blocks</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2023-06-27</date><risdate>2023</risdate><volume>29</volume><issue>36</issue><spage>e202300709</spage><epage>n/a</epage><pages>e202300709-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Two water‐soluble zinc(II) phthalocyanines substituted with two or four permethylated β‐cyclodextrin (β‐CD) moieties at the α positions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulky β‐CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2‐anthraquinonesulfonate (AQ) in water through host–guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady‐state and time‐resolved spectroscopic methods. In the ternary complexes, the ZnTPPS units serve as light‐harvesting antennas to capture the light energy and transfer it to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is subsequently quenched by the electron‐deficient AQ units through electron transfer. Femtosecond transient absorption spectroscopy provides clear evidence for the singlet‐singlet energy transfer from the photo‐excited ZnTPPS to the phthalocyanine core with a rate constant (kENT) in the order of 109 s−1. The population of phthalocyanine radical cations indicates the occurrence of electron transfer from the excited phthalocyanine to the AQ moieties, forming a charge‐separated state. β‐Cyclodextrin‐conjugated zinc(II) phthalocyanines form stable host–guest complexes with a tetrasulfonated porphyrin and sodium 2‐anthraquinonesulfonate (AQ) in water. Upon excitation of the porphyrin unit, they undergo excitation energy transfer followed by electron transfer as shown by various spectroscopic methods, functioning as artificial photosynthetic models.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36988198</pmid><doi>10.1002/chem.202300709</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3815-8949</orcidid><orcidid>https://orcid.org/0000-0001-9087-960X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2023-06, Vol.29 (36), p.e202300709-n/a
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2792502705
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Cations
Chemistry
Construction
Cyclodextrin
Cyclodextrins
Electron transfer
Energy transfer
host–guest interactions
Photosynthesis
photosynthetic models
phthalocyanines
Porphyrins
Zinc
title Assembling Artificial Photosynthetic Models in Water Using β‐Cyclodextrin‐Conjugated Phthalocyanines as Building Blocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembling%20Artificial%20Photosynthetic%20Models%20in%20Water%20Using%20%CE%B2%E2%80%90Cyclodextrin%E2%80%90Conjugated%20Phthalocyanines%20as%20Building%20Blocks&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Chen,%20Xiao%E2%80%90Fei&rft.date=2023-06-27&rft.volume=29&rft.issue=36&rft.spage=e202300709&rft.epage=n/a&rft.pages=e202300709-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202300709&rft_dat=%3Cproquest_cross%3E2830460924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830460924&rft_id=info:pmid/36988198&rfr_iscdi=true