Paramagnetic-to-antiferromagnetic phase transformation in sputter-deposited Ni-Mn thin films

Sputter-deposited, equiatomic Ni-Mn thin films were observed to possess a metastable, nanocrystalline, chemically disordered, fcc (Al) structure. Grain growth and a phase change to a chemically ordered, antiferromagnetic Ll0 structure were identified by x-ray diffraction (XRD) and transmission elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2003-11, Vol.32 (11), p.1155-1159
Hauptverfasser: LADWIG, Peter F, YING YANG, LING DING, TSU, I.-Fei, CHANG, Y. Austin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 11
container_start_page 1155
container_title Journal of electronic materials
container_volume 32
creator LADWIG, Peter F
YING YANG
LING DING
TSU, I.-Fei
CHANG, Y. Austin
description Sputter-deposited, equiatomic Ni-Mn thin films were observed to possess a metastable, nanocrystalline, chemically disordered, fcc (Al) structure. Grain growth and a phase change to a chemically ordered, antiferromagnetic Ll0 structure were identified by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) experiments revealed exothermic signals that correspond to the grain growth and phase transformation reactions. The enthalpy of transformation for the Al to L10 phase change was calculated as -3.5 kJ/mol, which agrees with thermodynamic modeling. An activation energy of 139 kJ/mol was calculated for the phase transformation by the Kissinger method.
doi_str_mv 10.1007/s11664-003-0005-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27924101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>499346191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-31ef11511ced5ccce22009370c24a3243ce7aec35487c840746381c04c82bb6a3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt_gLdF0Ft0JsnupkcpfkH9OCh4EEKaZm3K7mZN0oP_vSmtCB6GgZn3Ho8fIacIlwhQX0XEqhIUgOeBklZ7ZISl4BRl9b5PRsArpCXj5SE5inEFgCVKHJGPFx10pz97m5yhyVPdJ9fYEPzvsRiWOtoiBd3HxodOJ-f7wvVFHNYp2UAXdvDRJbsonhx97Iu0zM_GtV08JgeNbqM92e0xebu9eZ3e09nz3cP0ekYN55goR9tg7oPGLkpjjGUMYMJrMExozgQ3ttbW8FLI2kgBtai4RAPCSDafV5qPycU2dwj-a21jUp2Lxrat7q1fR8XqCRMImIVn_4Qrvw597qYYCDkBWYsswq3IBB9jsI0agut0-FYIagNbbWGrDFttYKsqe853wToa3TYZlnHxz1hyISUI_gOUAX9L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204890874</pqid></control><display><type>article</type><title>Paramagnetic-to-antiferromagnetic phase transformation in sputter-deposited Ni-Mn thin films</title><source>SpringerLink Journals - AutoHoldings</source><creator>LADWIG, Peter F ; YING YANG ; LING DING ; TSU, I.-Fei ; CHANG, Y. Austin</creator><creatorcontrib>LADWIG, Peter F ; YING YANG ; LING DING ; TSU, I.-Fei ; CHANG, Y. Austin</creatorcontrib><description>Sputter-deposited, equiatomic Ni-Mn thin films were observed to possess a metastable, nanocrystalline, chemically disordered, fcc (Al) structure. Grain growth and a phase change to a chemically ordered, antiferromagnetic Ll0 structure were identified by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) experiments revealed exothermic signals that correspond to the grain growth and phase transformation reactions. The enthalpy of transformation for the Al to L10 phase change was calculated as -3.5 kJ/mol, which agrees with thermodynamic modeling. An activation energy of 139 kJ/mol was calculated for the phase transformation by the Kissinger method.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-003-0005-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Giant magnetoresistance ; Magnetic properties and materials ; Magnetotransport phenomena, materials for magnetotransport ; Physics</subject><ispartof>Journal of electronic materials, 2003-11, Vol.32 (11), p.1155-1159</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Nov 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-31ef11511ced5ccce22009370c24a3243ce7aec35487c840746381c04c82bb6a3</citedby><cites>FETCH-LOGICAL-c331t-31ef11511ced5ccce22009370c24a3243ce7aec35487c840746381c04c82bb6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15348804$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LADWIG, Peter F</creatorcontrib><creatorcontrib>YING YANG</creatorcontrib><creatorcontrib>LING DING</creatorcontrib><creatorcontrib>TSU, I.-Fei</creatorcontrib><creatorcontrib>CHANG, Y. Austin</creatorcontrib><title>Paramagnetic-to-antiferromagnetic phase transformation in sputter-deposited Ni-Mn thin films</title><title>Journal of electronic materials</title><description>Sputter-deposited, equiatomic Ni-Mn thin films were observed to possess a metastable, nanocrystalline, chemically disordered, fcc (Al) structure. Grain growth and a phase change to a chemically ordered, antiferromagnetic Ll0 structure were identified by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) experiments revealed exothermic signals that correspond to the grain growth and phase transformation reactions. The enthalpy of transformation for the Al to L10 phase change was calculated as -3.5 kJ/mol, which agrees with thermodynamic modeling. An activation energy of 139 kJ/mol was calculated for the phase transformation by the Kissinger method.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Giant magnetoresistance</subject><subject>Magnetic properties and materials</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1LAzEQxYMoWKt_gLdF0Ft0JsnupkcpfkH9OCh4EEKaZm3K7mZN0oP_vSmtCB6GgZn3Ho8fIacIlwhQX0XEqhIUgOeBklZ7ZISl4BRl9b5PRsArpCXj5SE5inEFgCVKHJGPFx10pz97m5yhyVPdJ9fYEPzvsRiWOtoiBd3HxodOJ-f7wvVFHNYp2UAXdvDRJbsonhx97Iu0zM_GtV08JgeNbqM92e0xebu9eZ3e09nz3cP0ekYN55goR9tg7oPGLkpjjGUMYMJrMExozgQ3ttbW8FLI2kgBtai4RAPCSDafV5qPycU2dwj-a21jUp2Lxrat7q1fR8XqCRMImIVn_4Qrvw597qYYCDkBWYsswq3IBB9jsI0agut0-FYIagNbbWGrDFttYKsqe853wToa3TYZlnHxz1hyISUI_gOUAX9L</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>LADWIG, Peter F</creator><creator>YING YANG</creator><creator>LING DING</creator><creator>TSU, I.-Fei</creator><creator>CHANG, Y. Austin</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20031101</creationdate><title>Paramagnetic-to-antiferromagnetic phase transformation in sputter-deposited Ni-Mn thin films</title><author>LADWIG, Peter F ; YING YANG ; LING DING ; TSU, I.-Fei ; CHANG, Y. Austin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-31ef11511ced5ccce22009370c24a3243ce7aec35487c840746381c04c82bb6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Giant magnetoresistance</topic><topic>Magnetic properties and materials</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LADWIG, Peter F</creatorcontrib><creatorcontrib>YING YANG</creatorcontrib><creatorcontrib>LING DING</creatorcontrib><creatorcontrib>TSU, I.-Fei</creatorcontrib><creatorcontrib>CHANG, Y. Austin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LADWIG, Peter F</au><au>YING YANG</au><au>LING DING</au><au>TSU, I.-Fei</au><au>CHANG, Y. Austin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paramagnetic-to-antiferromagnetic phase transformation in sputter-deposited Ni-Mn thin films</atitle><jtitle>Journal of electronic materials</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>32</volume><issue>11</issue><spage>1155</spage><epage>1159</epage><pages>1155-1159</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Sputter-deposited, equiatomic Ni-Mn thin films were observed to possess a metastable, nanocrystalline, chemically disordered, fcc (Al) structure. Grain growth and a phase change to a chemically ordered, antiferromagnetic Ll0 structure were identified by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) experiments revealed exothermic signals that correspond to the grain growth and phase transformation reactions. The enthalpy of transformation for the Al to L10 phase change was calculated as -3.5 kJ/mol, which agrees with thermodynamic modeling. An activation energy of 139 kJ/mol was calculated for the phase transformation by the Kissinger method.</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-003-0005-6</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2003-11, Vol.32 (11), p.1155-1159
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_27924101
source SpringerLink Journals - AutoHoldings
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Giant magnetoresistance
Magnetic properties and materials
Magnetotransport phenomena, materials for magnetotransport
Physics
title Paramagnetic-to-antiferromagnetic phase transformation in sputter-deposited Ni-Mn thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paramagnetic-to-antiferromagnetic%20phase%20transformation%20in%20sputter-deposited%20Ni-Mn%20thin%20films&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=LADWIG,%20Peter%20F&rft.date=2003-11-01&rft.volume=32&rft.issue=11&rft.spage=1155&rft.epage=1159&rft.pages=1155-1159&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-003-0005-6&rft_dat=%3Cproquest_cross%3E499346191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204890874&rft_id=info:pmid/&rfr_iscdi=true