Optimization of heat transfer utilizing graph based evolutionary algorithms
This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate...
Gespeichert in:
Veröffentlicht in: | The International journal of heat and fluid flow 2003-04, Vol.24 (2), p.267-277 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 2 |
container_start_page | 267 |
container_title | The International journal of heat and fluid flow |
container_volume | 24 |
creator | Bryden, Kenneth M. Ashlock, Daniel A. McCorkle, Douglas S. Urban, Gregory L. |
description | This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced. |
doi_str_mv | 10.1016/S0142-727X(02)00243-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27919681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X02002436</els_id><sourcerecordid>27919681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8591e786f0326ec0174534166e1a5b713a9b45a15380713d34fd697f3580db373</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKsfQdiLoofVSbKb7J5Eii8s9KCCt5BmZ9vIvkzSgv307tqiR0_DwP8x8yPklMIVBSquX4AmLJZMvl8AuwRgCY_FHhnRTOYxYzLbJ6NfySE58v4DAAQkckSeZ12wtd3oYNsmastoiTpEwenGl-iiVbCV3dhmES2c7pbRXHssIly31WowaPcV6WrROhuWtT8mB6WuPJ7s5pi83d-9Th7j6ezhaXI7jQ0XWYizNKcoM1ECZwINUJmkPKFCINXpXFKu83mSapryDPqt4ElZiFyWPM2gmHPJx-R8m9u59nOFPqjaeoNVpRtsV14xmdNcZLQXpluhca33DkvVOVv3RysKakCnftCpgYsCpn7QKdH7znYF2htdlT0NY_2fORF9OgyH3Gx12H-7tuiUNxYbg4V1aIIqWvtP0zfRQoLR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27919681</pqid></control><display><type>article</type><title>Optimization of heat transfer utilizing graph based evolutionary algorithms</title><source>Elsevier ScienceDirect Journals</source><creator>Bryden, Kenneth M. ; Ashlock, Daniel A. ; McCorkle, Douglas S. ; Urban, Gregory L.</creator><creatorcontrib>Bryden, Kenneth M. ; Ashlock, Daniel A. ; McCorkle, Douglas S. ; Urban, Gregory L.</creatorcontrib><description>This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/S0142-727X(02)00243-6</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Computational fluid dynamics ; Cookstove ; Devices using thermal energy ; Effectiveness ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Furnaces ; Graph based evolutionary algorithm ; Optimization</subject><ispartof>The International journal of heat and fluid flow, 2003-04, Vol.24 (2), p.267-277</ispartof><rights>2003 Elsevier Science Inc.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8591e786f0326ec0174534166e1a5b713a9b45a15380713d34fd697f3580db373</citedby><cites>FETCH-LOGICAL-c368t-8591e786f0326ec0174534166e1a5b713a9b45a15380713d34fd697f3580db373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142727X02002436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14668107$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryden, Kenneth M.</creatorcontrib><creatorcontrib>Ashlock, Daniel A.</creatorcontrib><creatorcontrib>McCorkle, Douglas S.</creatorcontrib><creatorcontrib>Urban, Gregory L.</creatorcontrib><title>Optimization of heat transfer utilizing graph based evolutionary algorithms</title><title>The International journal of heat and fluid flow</title><description>This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Cookstove</subject><subject>Devices using thermal energy</subject><subject>Effectiveness</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Furnaces</subject><subject>Graph based evolutionary algorithm</subject><subject>Optimization</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQx4MoWKsfQdiLoofVSbKb7J5Eii8s9KCCt5BmZ9vIvkzSgv307tqiR0_DwP8x8yPklMIVBSquX4AmLJZMvl8AuwRgCY_FHhnRTOYxYzLbJ6NfySE58v4DAAQkckSeZ12wtd3oYNsmastoiTpEwenGl-iiVbCV3dhmES2c7pbRXHssIly31WowaPcV6WrROhuWtT8mB6WuPJ7s5pi83d-9Th7j6ezhaXI7jQ0XWYizNKcoM1ECZwINUJmkPKFCINXpXFKu83mSapryDPqt4ElZiFyWPM2gmHPJx-R8m9u59nOFPqjaeoNVpRtsV14xmdNcZLQXpluhca33DkvVOVv3RysKakCnftCpgYsCpn7QKdH7znYF2htdlT0NY_2fORF9OgyH3Gx12H-7tuiUNxYbg4V1aIIqWvtP0zfRQoLR</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Bryden, Kenneth M.</creator><creator>Ashlock, Daniel A.</creator><creator>McCorkle, Douglas S.</creator><creator>Urban, Gregory L.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20030401</creationdate><title>Optimization of heat transfer utilizing graph based evolutionary algorithms</title><author>Bryden, Kenneth M. ; Ashlock, Daniel A. ; McCorkle, Douglas S. ; Urban, Gregory L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8591e786f0326ec0174534166e1a5b713a9b45a15380713d34fd697f3580db373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Cookstove</topic><topic>Devices using thermal energy</topic><topic>Effectiveness</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Furnaces</topic><topic>Graph based evolutionary algorithm</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryden, Kenneth M.</creatorcontrib><creatorcontrib>Ashlock, Daniel A.</creatorcontrib><creatorcontrib>McCorkle, Douglas S.</creatorcontrib><creatorcontrib>Urban, Gregory L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryden, Kenneth M.</au><au>Ashlock, Daniel A.</au><au>McCorkle, Douglas S.</au><au>Urban, Gregory L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of heat transfer utilizing graph based evolutionary algorithms</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>24</volume><issue>2</issue><spage>267</spage><epage>277</epage><pages>267-277</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0142-727X(02)00243-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-727X |
ispartof | The International journal of heat and fluid flow, 2003-04, Vol.24 (2), p.267-277 |
issn | 0142-727X 1879-2278 |
language | eng |
recordid | cdi_proquest_miscellaneous_27919681 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Computational fluid dynamics Cookstove Devices using thermal energy Effectiveness Energy Energy. Thermal use of fuels Exact sciences and technology Furnaces Graph based evolutionary algorithm Optimization |
title | Optimization of heat transfer utilizing graph based evolutionary algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20heat%20transfer%20utilizing%20graph%20based%20evolutionary%20algorithms&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Bryden,%20Kenneth%20M.&rft.date=2003-04-01&rft.volume=24&rft.issue=2&rft.spage=267&rft.epage=277&rft.pages=267-277&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/S0142-727X(02)00243-6&rft_dat=%3Cproquest_cross%3E27919681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27919681&rft_id=info:pmid/&rft_els_id=S0142727X02002436&rfr_iscdi=true |