Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules

Rationale Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2023-06, Vol.37 (11), p.e9513-n/a
Hauptverfasser: Kelly, Colette L., Manning, Cara, Frey, Claudia, Kaiser, Jan, Gluschankoff, Noah, Casciotti, Karen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e9513
container_title Rapid communications in mass spectrometry
container_volume 37
creator Kelly, Colette L.
Manning, Cara
Frey, Claudia
Kaiser, Jan
Gluschankoff, Noah
Casciotti, Karen L.
description Rationale Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations. Methods We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples. Results With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns. Conclusions Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.
doi_str_mv 10.1002/rcm.9513
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791704490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791704490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</originalsourceid><addsrcrecordid>eNp1kd1qFTEURoMo9rQKPoEEvPFm2p2_k4l35aCt0GIRvR4ymZ2aOjMZkxnqvIcPbOo5Kghe7eyPlUXCR8gLBqcMgJ8lN5waxcQjsmFgdAVcsMdkAyWrJDP1ETnO-Q6AMcXhKTkSW6MZq-WG_LhZQ45znOKA6Q09pzfr_CWOdLLuq71F6mOisZ1tGMN4S8M4JzvEHt3S20T3N5EmO4dIu-A9JhwdZupTHOhgc6Z5QjeXDecUHLWj7dccMo2ejqHkSzl-Dx0eXLGIMT8jT7ztMz4_zBPy-d3bT7vL6urDxfvd-VXlRC1EJblRHjn31nIJotsqyVTNOMiu5Z53wA1z2Bqjla592xrNpanldqulAtNqcUJe771Tit8WzHMzhOyw7-2I5WUN14ZpkNJAQV_9g97FJZXfFKpmQnGhQP0VuhRzTuibKYXBprVh0Dw01ZSmmoemCvryIFzaAbs_4O9qClDtgfvQ4_pfUfNxd_1L-BN80p7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813523505</pqid></control><display><type>article</type><title>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kelly, Colette L. ; Manning, Cara ; Frey, Claudia ; Kaiser, Jan ; Gluschankoff, Noah ; Casciotti, Karen L.</creator><creatorcontrib>Kelly, Colette L. ; Manning, Cara ; Frey, Claudia ; Kaiser, Jan ; Gluschankoff, Noah ; Casciotti, Karen L.</creatorcontrib><description>Rationale Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations. Methods We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples. Results With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns. Conclusions Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.9513</identifier><identifier>PMID: 36971184</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Calibration ; Data analysis ; Deltas ; Intercalibration ; Ion currents ; Ion sources ; Isotope ratios ; Isotopes ; Mass spectrometry ; Nitrous oxide ; Reference materials</subject><ispartof>Rapid communications in mass spectrometry, 2023-06, Vol.37 (11), p.e9513-n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</citedby><cites>FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</cites><orcidid>0000-0002-3660-4442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcm.9513$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcm.9513$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36971184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Colette L.</creatorcontrib><creatorcontrib>Manning, Cara</creatorcontrib><creatorcontrib>Frey, Claudia</creatorcontrib><creatorcontrib>Kaiser, Jan</creatorcontrib><creatorcontrib>Gluschankoff, Noah</creatorcontrib><creatorcontrib>Casciotti, Karen L.</creatorcontrib><title>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun Mass Spectrom</addtitle><description>Rationale Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations. Methods We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples. Results With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns. Conclusions Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.</description><subject>Calibration</subject><subject>Data analysis</subject><subject>Deltas</subject><subject>Intercalibration</subject><subject>Ion currents</subject><subject>Ion sources</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Mass spectrometry</subject><subject>Nitrous oxide</subject><subject>Reference materials</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kd1qFTEURoMo9rQKPoEEvPFm2p2_k4l35aCt0GIRvR4ymZ2aOjMZkxnqvIcPbOo5Kghe7eyPlUXCR8gLBqcMgJ8lN5waxcQjsmFgdAVcsMdkAyWrJDP1ETnO-Q6AMcXhKTkSW6MZq-WG_LhZQ45znOKA6Q09pzfr_CWOdLLuq71F6mOisZ1tGMN4S8M4JzvEHt3S20T3N5EmO4dIu-A9JhwdZupTHOhgc6Z5QjeXDecUHLWj7dccMo2ejqHkSzl-Dx0eXLGIMT8jT7ztMz4_zBPy-d3bT7vL6urDxfvd-VXlRC1EJblRHjn31nIJotsqyVTNOMiu5Z53wA1z2Bqjla592xrNpanldqulAtNqcUJe771Tit8WzHMzhOyw7-2I5WUN14ZpkNJAQV_9g97FJZXfFKpmQnGhQP0VuhRzTuibKYXBprVh0Dw01ZSmmoemCvryIFzaAbs_4O9qClDtgfvQ4_pfUfNxd_1L-BN80p7U</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Kelly, Colette L.</creator><creator>Manning, Cara</creator><creator>Frey, Claudia</creator><creator>Kaiser, Jan</creator><creator>Gluschankoff, Noah</creator><creator>Casciotti, Karen L.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3660-4442</orcidid></search><sort><creationdate>20230615</creationdate><title>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</title><author>Kelly, Colette L. ; Manning, Cara ; Frey, Claudia ; Kaiser, Jan ; Gluschankoff, Noah ; Casciotti, Karen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Data analysis</topic><topic>Deltas</topic><topic>Intercalibration</topic><topic>Ion currents</topic><topic>Ion sources</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Mass spectrometry</topic><topic>Nitrous oxide</topic><topic>Reference materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Colette L.</creatorcontrib><creatorcontrib>Manning, Cara</creatorcontrib><creatorcontrib>Frey, Claudia</creatorcontrib><creatorcontrib>Kaiser, Jan</creatorcontrib><creatorcontrib>Gluschankoff, Noah</creatorcontrib><creatorcontrib>Casciotti, Karen L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Colette L.</au><au>Manning, Cara</au><au>Frey, Claudia</au><au>Kaiser, Jan</au><au>Gluschankoff, Noah</au><au>Casciotti, Karen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun Mass Spectrom</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>37</volume><issue>11</issue><spage>e9513</spage><epage>n/a</epage><pages>e9513-n/a</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Rationale Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations. Methods We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples. Results With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns. Conclusions Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36971184</pmid><doi>10.1002/rcm.9513</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3660-4442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2023-06, Vol.37 (11), p.e9513-n/a
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_2791704490
source Wiley Online Library - AutoHoldings Journals
subjects Calibration
Data analysis
Deltas
Intercalibration
Ion currents
Ion sources
Isotope ratios
Isotopes
Mass spectrometry
Nitrous oxide
Reference materials
title Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyisotopomer:%20A%20Python%20package%20for%20obtaining%20intramolecular%20isotope%20ratio%20differences%20from%20mass%20spectrometric%20analysis%20of%20nitrous%20oxide%20isotopocules&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Kelly,%20Colette%20L.&rft.date=2023-06-15&rft.volume=37&rft.issue=11&rft.spage=e9513&rft.epage=n/a&rft.pages=e9513-n/a&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.9513&rft_dat=%3Cproquest_cross%3E2791704490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813523505&rft_id=info:pmid/36971184&rfr_iscdi=true