Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules
Rationale Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source,...
Gespeichert in:
Veröffentlicht in: | Rapid communications in mass spectrometry 2023-06, Vol.37 (11), p.e9513-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e9513 |
container_title | Rapid communications in mass spectrometry |
container_volume | 37 |
creator | Kelly, Colette L. Manning, Cara Frey, Claudia Kaiser, Jan Gluschankoff, Noah Casciotti, Karen L. |
description | Rationale
Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations.
Methods
We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples.
Results
With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns.
Conclusions
Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration. |
doi_str_mv | 10.1002/rcm.9513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791704490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791704490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</originalsourceid><addsrcrecordid>eNp1kd1qFTEURoMo9rQKPoEEvPFm2p2_k4l35aCt0GIRvR4ymZ2aOjMZkxnqvIcPbOo5Kghe7eyPlUXCR8gLBqcMgJ8lN5waxcQjsmFgdAVcsMdkAyWrJDP1ETnO-Q6AMcXhKTkSW6MZq-WG_LhZQ45znOKA6Q09pzfr_CWOdLLuq71F6mOisZ1tGMN4S8M4JzvEHt3S20T3N5EmO4dIu-A9JhwdZupTHOhgc6Z5QjeXDecUHLWj7dccMo2ejqHkSzl-Dx0eXLGIMT8jT7ztMz4_zBPy-d3bT7vL6urDxfvd-VXlRC1EJblRHjn31nIJotsqyVTNOMiu5Z53wA1z2Bqjla592xrNpanldqulAtNqcUJe771Tit8WzHMzhOyw7-2I5WUN14ZpkNJAQV_9g97FJZXfFKpmQnGhQP0VuhRzTuibKYXBprVh0Dw01ZSmmoemCvryIFzaAbs_4O9qClDtgfvQ4_pfUfNxd_1L-BN80p7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813523505</pqid></control><display><type>article</type><title>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kelly, Colette L. ; Manning, Cara ; Frey, Claudia ; Kaiser, Jan ; Gluschankoff, Noah ; Casciotti, Karen L.</creator><creatorcontrib>Kelly, Colette L. ; Manning, Cara ; Frey, Claudia ; Kaiser, Jan ; Gluschankoff, Noah ; Casciotti, Karen L.</creatorcontrib><description>Rationale
Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations.
Methods
We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples.
Results
With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns.
Conclusions
Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.9513</identifier><identifier>PMID: 36971184</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Calibration ; Data analysis ; Deltas ; Intercalibration ; Ion currents ; Ion sources ; Isotope ratios ; Isotopes ; Mass spectrometry ; Nitrous oxide ; Reference materials</subject><ispartof>Rapid communications in mass spectrometry, 2023-06, Vol.37 (11), p.e9513-n/a</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</citedby><cites>FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</cites><orcidid>0000-0002-3660-4442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcm.9513$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcm.9513$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36971184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Colette L.</creatorcontrib><creatorcontrib>Manning, Cara</creatorcontrib><creatorcontrib>Frey, Claudia</creatorcontrib><creatorcontrib>Kaiser, Jan</creatorcontrib><creatorcontrib>Gluschankoff, Noah</creatorcontrib><creatorcontrib>Casciotti, Karen L.</creatorcontrib><title>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun Mass Spectrom</addtitle><description>Rationale
Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations.
Methods
We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples.
Results
With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns.
Conclusions
Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.</description><subject>Calibration</subject><subject>Data analysis</subject><subject>Deltas</subject><subject>Intercalibration</subject><subject>Ion currents</subject><subject>Ion sources</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Mass spectrometry</subject><subject>Nitrous oxide</subject><subject>Reference materials</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kd1qFTEURoMo9rQKPoEEvPFm2p2_k4l35aCt0GIRvR4ymZ2aOjMZkxnqvIcPbOo5Kghe7eyPlUXCR8gLBqcMgJ8lN5waxcQjsmFgdAVcsMdkAyWrJDP1ETnO-Q6AMcXhKTkSW6MZq-WG_LhZQ45znOKA6Q09pzfr_CWOdLLuq71F6mOisZ1tGMN4S8M4JzvEHt3S20T3N5EmO4dIu-A9JhwdZupTHOhgc6Z5QjeXDecUHLWj7dccMo2ejqHkSzl-Dx0eXLGIMT8jT7ztMz4_zBPy-d3bT7vL6urDxfvd-VXlRC1EJblRHjn31nIJotsqyVTNOMiu5Z53wA1z2Bqjla592xrNpanldqulAtNqcUJe771Tit8WzHMzhOyw7-2I5WUN14ZpkNJAQV_9g97FJZXfFKpmQnGhQP0VuhRzTuibKYXBprVh0Dw01ZSmmoemCvryIFzaAbs_4O9qClDtgfvQ4_pfUfNxd_1L-BN80p7U</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Kelly, Colette L.</creator><creator>Manning, Cara</creator><creator>Frey, Claudia</creator><creator>Kaiser, Jan</creator><creator>Gluschankoff, Noah</creator><creator>Casciotti, Karen L.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3660-4442</orcidid></search><sort><creationdate>20230615</creationdate><title>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</title><author>Kelly, Colette L. ; Manning, Cara ; Frey, Claudia ; Kaiser, Jan ; Gluschankoff, Noah ; Casciotti, Karen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-4295fe22faa2403d6541581204db2f2d0291ceb997578fbb97249846674509b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Data analysis</topic><topic>Deltas</topic><topic>Intercalibration</topic><topic>Ion currents</topic><topic>Ion sources</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Mass spectrometry</topic><topic>Nitrous oxide</topic><topic>Reference materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Colette L.</creatorcontrib><creatorcontrib>Manning, Cara</creatorcontrib><creatorcontrib>Frey, Claudia</creatorcontrib><creatorcontrib>Kaiser, Jan</creatorcontrib><creatorcontrib>Gluschankoff, Noah</creatorcontrib><creatorcontrib>Casciotti, Karen L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Colette L.</au><au>Manning, Cara</au><au>Frey, Claudia</au><au>Kaiser, Jan</au><au>Gluschankoff, Noah</au><au>Casciotti, Karen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun Mass Spectrom</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>37</volume><issue>11</issue><spage>e9513</spage><epage>n/a</epage><pages>e9513-n/a</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Rationale
Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2O+) as well as those of the NO+ fragment ion. The data analysis requires correcting for “scrambling” in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations.
Methods
We developed a user‐friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2O samples.
Results
With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero‐point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2O isotope deltas in lake water unknowns.
Conclusions
Given these considerations, we discuss how to use pyisotopomer to obtain high‐quality N2O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36971184</pmid><doi>10.1002/rcm.9513</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3660-4442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-4198 |
ispartof | Rapid communications in mass spectrometry, 2023-06, Vol.37 (11), p.e9513-n/a |
issn | 0951-4198 1097-0231 |
language | eng |
recordid | cdi_proquest_miscellaneous_2791704490 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Calibration Data analysis Deltas Intercalibration Ion currents Ion sources Isotope ratios Isotopes Mass spectrometry Nitrous oxide Reference materials |
title | Pyisotopomer: A Python package for obtaining intramolecular isotope ratio differences from mass spectrometric analysis of nitrous oxide isotopocules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyisotopomer:%20A%20Python%20package%20for%20obtaining%20intramolecular%20isotope%20ratio%20differences%20from%20mass%20spectrometric%20analysis%20of%20nitrous%20oxide%20isotopocules&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Kelly,%20Colette%20L.&rft.date=2023-06-15&rft.volume=37&rft.issue=11&rft.spage=e9513&rft.epage=n/a&rft.pages=e9513-n/a&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.9513&rft_dat=%3Cproquest_cross%3E2791704490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813523505&rft_id=info:pmid/36971184&rfr_iscdi=true |