Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery

Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-07, Vol.19 (29), p.e2207133-n/a
Hauptverfasser: Guo, Yuqi, Chua, Rodney, Chen, Yingqian, Cai, Yi, Tang, Ernest Jun Jie, Lim, J. J. Nicholas, Tran, Thu Ha, Verma, Vivek, Wong, Ming Wah, Srinivasan, Madhavi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e2207133
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Guo, Yuqi
Chua, Rodney
Chen, Yingqian
Cai, Yi
Tang, Ernest Jun Jie
Lim, J. J. Nicholas
Tran, Thu Ha
Verma, Vivek
Wong, Ming Wah
Srinivasan, Madhavi
description Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future. A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.
doi_str_mv 10.1002/smll.202207133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791704230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791704230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMozl9Xj1Lw4mUzeWmT5qhzc8JEYXrxErrsdXak7UxapDf_BMH_0L_EyuYEL57yAt_7eHyEHDPaY5TCuc-t7QEFoJJxvkX2mGC8K2JQ25uZ0Q7Z935BKWcQyl3S4UJJBkrskeGombpsFgwsmsqVtqkwuEKfzYsgLV0wyubPn2_v9-jaX54UBoOnrDCfbx-T2qa1Cy6TqkLXHJKdNLEej9bvAXkcDh76o-747vqmfzHuGi457yoOUSxTlTAhjaCGQ6jiGSKGYcTkLKIgIjOVIk0lsjCBmMUIUgkwUxEhT_gBOVt5l658qdFXOs-8QWuTAsva6xZmkobAaYue_kEXZe2K9joNMY-V4AC8pXoryrjSe4epXrosT1yjGdXfhfV3Yb0p3C6crLX1NMfZBv9J2gJqBbxmFpt_dHpyOx7_yr8AHHuH4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838963223</pqid></control><display><type>article</type><title>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Yuqi ; Chua, Rodney ; Chen, Yingqian ; Cai, Yi ; Tang, Ernest Jun Jie ; Lim, J. J. Nicholas ; Tran, Thu Ha ; Verma, Vivek ; Wong, Ming Wah ; Srinivasan, Madhavi</creator><creatorcontrib>Guo, Yuqi ; Chua, Rodney ; Chen, Yingqian ; Cai, Yi ; Tang, Ernest Jun Jie ; Lim, J. J. Nicholas ; Tran, Thu Ha ; Verma, Vivek ; Wong, Ming Wah ; Srinivasan, Madhavi</creatorcontrib><description>Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future. A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207133</identifier><identifier>PMID: 36971296</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>aqueous batteries ; Aqueous electrolytes ; Charging ; conversion mechanism ; dendrite ; Discharge ; Electrochemistry ; Electrolytes ; Ethylene glycol ; hydrogen bonding ; Nanotechnology ; Rechargeable batteries ; side reactions ; Silver ; Sulfur ; Zinc ; Zinc sulfide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-07, Vol.19 (29), p.e2207133-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</citedby><cites>FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</cites><orcidid>0000-0002-5497-3428 ; 0000-0002-2862-2616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202207133$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202207133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36971296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Chua, Rodney</creatorcontrib><creatorcontrib>Chen, Yingqian</creatorcontrib><creatorcontrib>Cai, Yi</creatorcontrib><creatorcontrib>Tang, Ernest Jun Jie</creatorcontrib><creatorcontrib>Lim, J. J. Nicholas</creatorcontrib><creatorcontrib>Tran, Thu Ha</creatorcontrib><creatorcontrib>Verma, Vivek</creatorcontrib><creatorcontrib>Wong, Ming Wah</creatorcontrib><creatorcontrib>Srinivasan, Madhavi</creatorcontrib><title>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future. A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.</description><subject>aqueous batteries</subject><subject>Aqueous electrolytes</subject><subject>Charging</subject><subject>conversion mechanism</subject><subject>dendrite</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Ethylene glycol</subject><subject>hydrogen bonding</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><subject>side reactions</subject><subject>Silver</subject><subject>Sulfur</subject><subject>Zinc</subject><subject>Zinc sulfide</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMozl9Xj1Lw4mUzeWmT5qhzc8JEYXrxErrsdXak7UxapDf_BMH_0L_EyuYEL57yAt_7eHyEHDPaY5TCuc-t7QEFoJJxvkX2mGC8K2JQ25uZ0Q7Z935BKWcQyl3S4UJJBkrskeGombpsFgwsmsqVtqkwuEKfzYsgLV0wyubPn2_v9-jaX54UBoOnrDCfbx-T2qa1Cy6TqkLXHJKdNLEej9bvAXkcDh76o-747vqmfzHuGi457yoOUSxTlTAhjaCGQ6jiGSKGYcTkLKIgIjOVIk0lsjCBmMUIUgkwUxEhT_gBOVt5l658qdFXOs-8QWuTAsva6xZmkobAaYue_kEXZe2K9joNMY-V4AC8pXoryrjSe4epXrosT1yjGdXfhfV3Yb0p3C6crLX1NMfZBv9J2gJqBbxmFpt_dHpyOx7_yr8AHHuH4g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guo, Yuqi</creator><creator>Chua, Rodney</creator><creator>Chen, Yingqian</creator><creator>Cai, Yi</creator><creator>Tang, Ernest Jun Jie</creator><creator>Lim, J. J. Nicholas</creator><creator>Tran, Thu Ha</creator><creator>Verma, Vivek</creator><creator>Wong, Ming Wah</creator><creator>Srinivasan, Madhavi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5497-3428</orcidid><orcidid>https://orcid.org/0000-0002-2862-2616</orcidid></search><sort><creationdate>20230701</creationdate><title>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</title><author>Guo, Yuqi ; Chua, Rodney ; Chen, Yingqian ; Cai, Yi ; Tang, Ernest Jun Jie ; Lim, J. J. Nicholas ; Tran, Thu Ha ; Verma, Vivek ; Wong, Ming Wah ; Srinivasan, Madhavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aqueous batteries</topic><topic>Aqueous electrolytes</topic><topic>Charging</topic><topic>conversion mechanism</topic><topic>dendrite</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Ethylene glycol</topic><topic>hydrogen bonding</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><topic>side reactions</topic><topic>Silver</topic><topic>Sulfur</topic><topic>Zinc</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Chua, Rodney</creatorcontrib><creatorcontrib>Chen, Yingqian</creatorcontrib><creatorcontrib>Cai, Yi</creatorcontrib><creatorcontrib>Tang, Ernest Jun Jie</creatorcontrib><creatorcontrib>Lim, J. J. Nicholas</creatorcontrib><creatorcontrib>Tran, Thu Ha</creatorcontrib><creatorcontrib>Verma, Vivek</creatorcontrib><creatorcontrib>Wong, Ming Wah</creatorcontrib><creatorcontrib>Srinivasan, Madhavi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yuqi</au><au>Chua, Rodney</au><au>Chen, Yingqian</au><au>Cai, Yi</au><au>Tang, Ernest Jun Jie</au><au>Lim, J. J. Nicholas</au><au>Tran, Thu Ha</au><au>Verma, Vivek</au><au>Wong, Ming Wah</au><au>Srinivasan, Madhavi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>19</volume><issue>29</issue><spage>e2207133</spage><epage>n/a</epage><pages>e2207133-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future. A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36971296</pmid><doi>10.1002/smll.202207133</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5497-3428</orcidid><orcidid>https://orcid.org/0000-0002-2862-2616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-07, Vol.19 (29), p.e2207133-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2791704230
source Wiley Online Library Journals Frontfile Complete
subjects aqueous batteries
Aqueous electrolytes
Charging
conversion mechanism
dendrite
Discharge
Electrochemistry
Electrolytes
Ethylene glycol
hydrogen bonding
Nanotechnology
Rechargeable batteries
side reactions
Silver
Sulfur
Zinc
Zinc sulfide
title Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Electrolyte%20Design%20for%20High%E2%80%90Performance%20Zinc%E2%80%93Sulfur%20Battery&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Guo,%20Yuqi&rft.date=2023-07-01&rft.volume=19&rft.issue=29&rft.spage=e2207133&rft.epage=n/a&rft.pages=e2207133-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207133&rft_dat=%3Cproquest_cross%3E2791704230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838963223&rft_id=info:pmid/36971296&rfr_iscdi=true