Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery
Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-07, Vol.19 (29), p.e2207133-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | e2207133 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Guo, Yuqi Chua, Rodney Chen, Yingqian Cai, Yi Tang, Ernest Jun Jie Lim, J. J. Nicholas Tran, Thu Ha Verma, Vivek Wong, Ming Wah Srinivasan, Madhavi |
description | Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating. |
doi_str_mv | 10.1002/smll.202207133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791704230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791704230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMozl9Xj1Lw4mUzeWmT5qhzc8JEYXrxErrsdXak7UxapDf_BMH_0L_EyuYEL57yAt_7eHyEHDPaY5TCuc-t7QEFoJJxvkX2mGC8K2JQ25uZ0Q7Z935BKWcQyl3S4UJJBkrskeGombpsFgwsmsqVtqkwuEKfzYsgLV0wyubPn2_v9-jaX54UBoOnrDCfbx-T2qa1Cy6TqkLXHJKdNLEej9bvAXkcDh76o-747vqmfzHuGi457yoOUSxTlTAhjaCGQ6jiGSKGYcTkLKIgIjOVIk0lsjCBmMUIUgkwUxEhT_gBOVt5l658qdFXOs-8QWuTAsva6xZmkobAaYue_kEXZe2K9joNMY-V4AC8pXoryrjSe4epXrosT1yjGdXfhfV3Yb0p3C6crLX1NMfZBv9J2gJqBbxmFpt_dHpyOx7_yr8AHHuH4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838963223</pqid></control><display><type>article</type><title>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Yuqi ; Chua, Rodney ; Chen, Yingqian ; Cai, Yi ; Tang, Ernest Jun Jie ; Lim, J. J. Nicholas ; Tran, Thu Ha ; Verma, Vivek ; Wong, Ming Wah ; Srinivasan, Madhavi</creator><creatorcontrib>Guo, Yuqi ; Chua, Rodney ; Chen, Yingqian ; Cai, Yi ; Tang, Ernest Jun Jie ; Lim, J. J. Nicholas ; Tran, Thu Ha ; Verma, Vivek ; Wong, Ming Wah ; Srinivasan, Madhavi</creatorcontrib><description>Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207133</identifier><identifier>PMID: 36971296</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>aqueous batteries ; Aqueous electrolytes ; Charging ; conversion mechanism ; dendrite ; Discharge ; Electrochemistry ; Electrolytes ; Ethylene glycol ; hydrogen bonding ; Nanotechnology ; Rechargeable batteries ; side reactions ; Silver ; Sulfur ; Zinc ; Zinc sulfide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-07, Vol.19 (29), p.e2207133-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</citedby><cites>FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</cites><orcidid>0000-0002-5497-3428 ; 0000-0002-2862-2616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202207133$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202207133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36971296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Chua, Rodney</creatorcontrib><creatorcontrib>Chen, Yingqian</creatorcontrib><creatorcontrib>Cai, Yi</creatorcontrib><creatorcontrib>Tang, Ernest Jun Jie</creatorcontrib><creatorcontrib>Lim, J. J. Nicholas</creatorcontrib><creatorcontrib>Tran, Thu Ha</creatorcontrib><creatorcontrib>Verma, Vivek</creatorcontrib><creatorcontrib>Wong, Ming Wah</creatorcontrib><creatorcontrib>Srinivasan, Madhavi</creatorcontrib><title>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.</description><subject>aqueous batteries</subject><subject>Aqueous electrolytes</subject><subject>Charging</subject><subject>conversion mechanism</subject><subject>dendrite</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Ethylene glycol</subject><subject>hydrogen bonding</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><subject>side reactions</subject><subject>Silver</subject><subject>Sulfur</subject><subject>Zinc</subject><subject>Zinc sulfide</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMozl9Xj1Lw4mUzeWmT5qhzc8JEYXrxErrsdXak7UxapDf_BMH_0L_EyuYEL57yAt_7eHyEHDPaY5TCuc-t7QEFoJJxvkX2mGC8K2JQ25uZ0Q7Z935BKWcQyl3S4UJJBkrskeGombpsFgwsmsqVtqkwuEKfzYsgLV0wyubPn2_v9-jaX54UBoOnrDCfbx-T2qa1Cy6TqkLXHJKdNLEej9bvAXkcDh76o-747vqmfzHuGi457yoOUSxTlTAhjaCGQ6jiGSKGYcTkLKIgIjOVIk0lsjCBmMUIUgkwUxEhT_gBOVt5l658qdFXOs-8QWuTAsva6xZmkobAaYue_kEXZe2K9joNMY-V4AC8pXoryrjSe4epXrosT1yjGdXfhfV3Yb0p3C6crLX1NMfZBv9J2gJqBbxmFpt_dHpyOx7_yr8AHHuH4g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guo, Yuqi</creator><creator>Chua, Rodney</creator><creator>Chen, Yingqian</creator><creator>Cai, Yi</creator><creator>Tang, Ernest Jun Jie</creator><creator>Lim, J. J. Nicholas</creator><creator>Tran, Thu Ha</creator><creator>Verma, Vivek</creator><creator>Wong, Ming Wah</creator><creator>Srinivasan, Madhavi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5497-3428</orcidid><orcidid>https://orcid.org/0000-0002-2862-2616</orcidid></search><sort><creationdate>20230701</creationdate><title>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</title><author>Guo, Yuqi ; Chua, Rodney ; Chen, Yingqian ; Cai, Yi ; Tang, Ernest Jun Jie ; Lim, J. J. Nicholas ; Tran, Thu Ha ; Verma, Vivek ; Wong, Ming Wah ; Srinivasan, Madhavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-932587f9a167c60c32498deee44517d50265cb76ff7e14a2818e27962cb65e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aqueous batteries</topic><topic>Aqueous electrolytes</topic><topic>Charging</topic><topic>conversion mechanism</topic><topic>dendrite</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Ethylene glycol</topic><topic>hydrogen bonding</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><topic>side reactions</topic><topic>Silver</topic><topic>Sulfur</topic><topic>Zinc</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yuqi</creatorcontrib><creatorcontrib>Chua, Rodney</creatorcontrib><creatorcontrib>Chen, Yingqian</creatorcontrib><creatorcontrib>Cai, Yi</creatorcontrib><creatorcontrib>Tang, Ernest Jun Jie</creatorcontrib><creatorcontrib>Lim, J. J. Nicholas</creatorcontrib><creatorcontrib>Tran, Thu Ha</creatorcontrib><creatorcontrib>Verma, Vivek</creatorcontrib><creatorcontrib>Wong, Ming Wah</creatorcontrib><creatorcontrib>Srinivasan, Madhavi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yuqi</au><au>Chua, Rodney</au><au>Chen, Yingqian</au><au>Cai, Yi</au><au>Tang, Ernest Jun Jie</au><au>Lim, J. J. Nicholas</au><au>Tran, Thu Ha</au><au>Verma, Vivek</au><au>Wong, Ming Wah</au><au>Srinivasan, Madhavi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>19</volume><issue>29</issue><spage>e2207133</spage><epage>n/a</epage><pages>e2207133-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1 and an excellent energy density of 730 Wh kg−1 at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2− (S8→Sx2−→S22−+S2−)${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}})$, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
A high‐performance Zn–S battery is achieved by employing a hybrid electrolyte using a low‐cost protic solvent (ethylene glycol) as the co‐solvent in water. The designed hybrid electrolyte not only can regulate water activity and suppress sulfur side reactions in aqueous electrolytes but also forms an in situ SEI layer on the Zn anode to facilitate reversible Zn stripping/plating.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36971296</pmid><doi>10.1002/smll.202207133</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5497-3428</orcidid><orcidid>https://orcid.org/0000-0002-2862-2616</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-07, Vol.19 (29), p.e2207133-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2791704230 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aqueous batteries Aqueous electrolytes Charging conversion mechanism dendrite Discharge Electrochemistry Electrolytes Ethylene glycol hydrogen bonding Nanotechnology Rechargeable batteries side reactions Silver Sulfur Zinc Zinc sulfide |
title | Hybrid Electrolyte Design for High‐Performance Zinc–Sulfur Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Electrolyte%20Design%20for%20High%E2%80%90Performance%20Zinc%E2%80%93Sulfur%20Battery&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Guo,%20Yuqi&rft.date=2023-07-01&rft.volume=19&rft.issue=29&rft.spage=e2207133&rft.epage=n/a&rft.pages=e2207133-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207133&rft_dat=%3Cproquest_cross%3E2791704230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838963223&rft_id=info:pmid/36971296&rfr_iscdi=true |