Well-Aligned Track-Accelerated Tripedal DNA Walker for Photoelectrochemical Recognition of Dual-miRNAs Based on Molecular Logic Gates

Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-04, Vol.95 (13), p.5764-5772
Hauptverfasser: Yang, Hui, Shen, Haoran, Qileng, Aori, Cui, Guosheng, Liang, Ziqing, Liu, Yingju, Liu, Weipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5772
container_issue 13
container_start_page 5764
container_title Analytical chemistry (Washington)
container_volume 95
creator Yang, Hui
Shen, Haoran
Qileng, Aori
Cui, Guosheng
Liang, Ziqing
Liu, Yingju
Liu, Weipeng
description Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.
doi_str_mv 10.1021/acs.analchem.3c00027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791381912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2799223945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-cac13db97ca3b0d640c2a37dbc3f00d7e874afa69d260429763c33323fdd62943</originalsourceid><addsrcrecordid>eNp9kcFuEzEURS0EoqH0DxCyxIbNhGd7asfLoYWClLaoatXl6MX2pG4949SeWfAB_DdOk3bBgpWl63Pve_Yl5AODOQPOvqDJcxwwmDvXz4UBAK5ekRk75lDJxYK_JrOiiYorgAPyLud7AMaAybfkQEgtmVZqRv7cuhCqJvj14Cy9TmgeqsYYF1zC8UnxG2cx0NOLht5ieHCJdjHRX3dxjIUyY4rbDbwpzJUzcT340ceBxo6eThiq3l9dNJl-xVzSin4ei2kKmOgyrr2hZ2VMfk_edBiyO9qfh-Tm-7frkx_V8vLs50mzrFAoOVYGDRN2pZVBsQIrazC83NiVER2AVW6hauxQassl1FwrKYwQgovOWsl1LQ7J513uJsXHyeWx7X0ujw04uDjllivNxIJpxgv66R_0Pk6p_PcTpTkXuj4uVL2jTIo5J9e1m-R7TL9bBu22prbU1D7X1O5rKraP-_Bp1Tv7YnrupQCwA7b2l8H_zfwLcyKhoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799223945</pqid></control><display><type>article</type><title>Well-Aligned Track-Accelerated Tripedal DNA Walker for Photoelectrochemical Recognition of Dual-miRNAs Based on Molecular Logic Gates</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yang, Hui ; Shen, Haoran ; Qileng, Aori ; Cui, Guosheng ; Liang, Ziqing ; Liu, Yingju ; Liu, Weipeng</creator><creatorcontrib>Yang, Hui ; Shen, Haoran ; Qileng, Aori ; Cui, Guosheng ; Liang, Ziqing ; Liu, Yingju ; Liu, Weipeng</creatorcontrib><description>Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c00027</identifier><identifier>PMID: 36961977</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkaline phosphatase ; Analytical chemistry ; Ascorbic acid ; Biosensing Techniques - methods ; Biosensors ; Catalysis ; Chemistry ; Deoxyribonucleic acid ; Detection limits ; DNA ; DNA - chemistry ; Gates ; Limit of Detection ; Logic ; Logic circuits ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Photoelectric effect ; Photoelectric emission ; Post-transcription</subject><ispartof>Analytical chemistry (Washington), 2023-04, Vol.95 (13), p.5764-5772</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 4, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-cac13db97ca3b0d640c2a37dbc3f00d7e874afa69d260429763c33323fdd62943</citedby><cites>FETCH-LOGICAL-a376t-cac13db97ca3b0d640c2a37dbc3f00d7e874afa69d260429763c33323fdd62943</cites><orcidid>0000-0002-1130-4945 ; 0000-0002-2153-1682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c00027$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c00027$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36961977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Shen, Haoran</creatorcontrib><creatorcontrib>Qileng, Aori</creatorcontrib><creatorcontrib>Cui, Guosheng</creatorcontrib><creatorcontrib>Liang, Ziqing</creatorcontrib><creatorcontrib>Liu, Yingju</creatorcontrib><creatorcontrib>Liu, Weipeng</creatorcontrib><title>Well-Aligned Track-Accelerated Tripedal DNA Walker for Photoelectrochemical Recognition of Dual-miRNAs Based on Molecular Logic Gates</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.</description><subject>Alkaline phosphatase</subject><subject>Analytical chemistry</subject><subject>Ascorbic acid</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>Detection limits</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Gates</subject><subject>Limit of Detection</subject><subject>Logic</subject><subject>Logic circuits</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Post-transcription</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEURS0EoqH0DxCyxIbNhGd7asfLoYWClLaoatXl6MX2pG4949SeWfAB_DdOk3bBgpWl63Pve_Yl5AODOQPOvqDJcxwwmDvXz4UBAK5ekRk75lDJxYK_JrOiiYorgAPyLud7AMaAybfkQEgtmVZqRv7cuhCqJvj14Cy9TmgeqsYYF1zC8UnxG2cx0NOLht5ieHCJdjHRX3dxjIUyY4rbDbwpzJUzcT340ceBxo6eThiq3l9dNJl-xVzSin4ei2kKmOgyrr2hZ2VMfk_edBiyO9qfh-Tm-7frkx_V8vLs50mzrFAoOVYGDRN2pZVBsQIrazC83NiVER2AVW6hauxQassl1FwrKYwQgovOWsl1LQ7J513uJsXHyeWx7X0ujw04uDjllivNxIJpxgv66R_0Pk6p_PcTpTkXuj4uVL2jTIo5J9e1m-R7TL9bBu22prbU1D7X1O5rKraP-_Bp1Tv7YnrupQCwA7b2l8H_zfwLcyKhoA</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Yang, Hui</creator><creator>Shen, Haoran</creator><creator>Qileng, Aori</creator><creator>Cui, Guosheng</creator><creator>Liang, Ziqing</creator><creator>Liu, Yingju</creator><creator>Liu, Weipeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1130-4945</orcidid><orcidid>https://orcid.org/0000-0002-2153-1682</orcidid></search><sort><creationdate>20230404</creationdate><title>Well-Aligned Track-Accelerated Tripedal DNA Walker for Photoelectrochemical Recognition of Dual-miRNAs Based on Molecular Logic Gates</title><author>Yang, Hui ; Shen, Haoran ; Qileng, Aori ; Cui, Guosheng ; Liang, Ziqing ; Liu, Yingju ; Liu, Weipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-cac13db97ca3b0d640c2a37dbc3f00d7e874afa69d260429763c33323fdd62943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkaline phosphatase</topic><topic>Analytical chemistry</topic><topic>Ascorbic acid</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>Detection limits</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Gates</topic><topic>Limit of Detection</topic><topic>Logic</topic><topic>Logic circuits</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Post-transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Shen, Haoran</creatorcontrib><creatorcontrib>Qileng, Aori</creatorcontrib><creatorcontrib>Cui, Guosheng</creatorcontrib><creatorcontrib>Liang, Ziqing</creatorcontrib><creatorcontrib>Liu, Yingju</creatorcontrib><creatorcontrib>Liu, Weipeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hui</au><au>Shen, Haoran</au><au>Qileng, Aori</au><au>Cui, Guosheng</au><au>Liang, Ziqing</au><au>Liu, Yingju</au><au>Liu, Weipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-Aligned Track-Accelerated Tripedal DNA Walker for Photoelectrochemical Recognition of Dual-miRNAs Based on Molecular Logic Gates</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-04-04</date><risdate>2023</risdate><volume>95</volume><issue>13</issue><spage>5764</spage><epage>5772</epage><pages>5764-5772</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36961977</pmid><doi>10.1021/acs.analchem.3c00027</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1130-4945</orcidid><orcidid>https://orcid.org/0000-0002-2153-1682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-04, Vol.95 (13), p.5764-5772
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2791381912
source MEDLINE; American Chemical Society Journals
subjects Alkaline phosphatase
Analytical chemistry
Ascorbic acid
Biosensing Techniques - methods
Biosensors
Catalysis
Chemistry
Deoxyribonucleic acid
Detection limits
DNA
DNA - chemistry
Gates
Limit of Detection
Logic
Logic circuits
MicroRNAs
MicroRNAs - genetics
miRNA
Photoelectric effect
Photoelectric emission
Post-transcription
title Well-Aligned Track-Accelerated Tripedal DNA Walker for Photoelectrochemical Recognition of Dual-miRNAs Based on Molecular Logic Gates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-Aligned%20Track-Accelerated%20Tripedal%20DNA%20Walker%20for%20Photoelectrochemical%20Recognition%20of%20Dual-miRNAs%20Based%20on%20Molecular%20Logic%20Gates&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yang,%20Hui&rft.date=2023-04-04&rft.volume=95&rft.issue=13&rft.spage=5764&rft.epage=5772&rft.pages=5764-5772&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c00027&rft_dat=%3Cproquest_cross%3E2799223945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799223945&rft_id=info:pmid/36961977&rfr_iscdi=true