Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins
This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using...
Gespeichert in:
Veröffentlicht in: | Journal of animal breeding and genetics (1986) 2023-07, Vol.140 (4), p.440-461 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 4 |
container_start_page | 440 |
container_title | Journal of animal breeding and genetics (1986) |
container_volume | 140 |
creator | Soumri, N. Carabaño, Maria J. González‐Recio, O. Bedhiaf‐Romdhani, S. |
description | This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values. |
doi_str_mv | 10.1111/jbg.12770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791381584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791381584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3480-9c3d24b89d9954d3a84e5b2784cbc1fcd5c04fdede78d5f03cda6894207236893</originalsourceid><addsrcrecordid>eNp1kU1LHTEUhoNY6q3twj9QAm5acDRfM5MsrbTaIhTErkMmOXPJdSa5Jhnk_vtGr-2i0GxySB4ezjkvQieUnNN6LjbD-pyyvicHaEUFVw3hUh6iFVGcNqzr5BF6l_OGkPreq7foiHeqayljK_R0Z4KLM06wTpCzjwHP0cGUcYkYcvGzKYDXEKB4i7cmmRkKpIzHmPDspwe88zC5MzyacoarC29TLOADtjEUCCXjWt8vwWdvAr6JU37-ze_Rm9FMGT683sfo17ev91c3ze3P6-9Xl7eN5UKSRlnumBikckq1wnEjBbQD66Wwg6Wjda0lYnTgoJeuHQm3znRSCUZ6xmvBj9Gnvbe29bjUgfTss4VpMgHikjXrFeWStlJU9PQfdBOXFGp3mknW9kJ1nFbq856yKeacYNTbVJeUdpoS_ZyGrmnolzQq-_HVuAwzuL_kn_VX4GIPPPkJdv836R9frvfK34QllH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825749631</pqid></control><display><type>article</type><title>Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Soumri, N. ; Carabaño, Maria J. ; González‐Recio, O. ; Bedhiaf‐Romdhani, S.</creator><creatorcontrib>Soumri, N. ; Carabaño, Maria J. ; González‐Recio, O. ; Bedhiaf‐Romdhani, S.</creatorcontrib><description>This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.</description><identifier>ISSN: 0931-2668</identifier><identifier>EISSN: 1439-0388</identifier><identifier>DOI: 10.1111/jbg.12770</identifier><identifier>PMID: 36965122</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Genetic improvement ; genetic parameters ; Genetic transformation ; Heritability ; Holstein ; Lactation ; Mathematical models ; Milk ; model comparison ; persistency ; Polynomials ; Proteins ; random regression ; Regression analysis ; Regression models ; Statistical analysis ; Transformations (mathematics)</subject><ispartof>Journal of animal breeding and genetics (1986), 2023-07, Vol.140 (4), p.440-461</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>Copyright © 2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3480-9c3d24b89d9954d3a84e5b2784cbc1fcd5c04fdede78d5f03cda6894207236893</cites><orcidid>0000-0001-8140-7256 ; 0000-0002-8602-9474 ; 0000-0002-9106-4063 ; 0000-0002-3087-9170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjbg.12770$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjbg.12770$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36965122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soumri, N.</creatorcontrib><creatorcontrib>Carabaño, Maria J.</creatorcontrib><creatorcontrib>González‐Recio, O.</creatorcontrib><creatorcontrib>Bedhiaf‐Romdhani, S.</creatorcontrib><title>Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins</title><title>Journal of animal breeding and genetics (1986)</title><addtitle>J Anim Breed Genet</addtitle><description>This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.</description><subject>Bayesian analysis</subject><subject>Genetic improvement</subject><subject>genetic parameters</subject><subject>Genetic transformation</subject><subject>Heritability</subject><subject>Holstein</subject><subject>Lactation</subject><subject>Mathematical models</subject><subject>Milk</subject><subject>model comparison</subject><subject>persistency</subject><subject>Polynomials</subject><subject>Proteins</subject><subject>random regression</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Transformations (mathematics)</subject><issn>0931-2668</issn><issn>1439-0388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LHTEUhoNY6q3twj9QAm5acDRfM5MsrbTaIhTErkMmOXPJdSa5Jhnk_vtGr-2i0GxySB4ezjkvQieUnNN6LjbD-pyyvicHaEUFVw3hUh6iFVGcNqzr5BF6l_OGkPreq7foiHeqayljK_R0Z4KLM06wTpCzjwHP0cGUcYkYcvGzKYDXEKB4i7cmmRkKpIzHmPDspwe88zC5MzyacoarC29TLOADtjEUCCXjWt8vwWdvAr6JU37-ze_Rm9FMGT683sfo17ev91c3ze3P6-9Xl7eN5UKSRlnumBikckq1wnEjBbQD66Wwg6Wjda0lYnTgoJeuHQm3znRSCUZ6xmvBj9Gnvbe29bjUgfTss4VpMgHikjXrFeWStlJU9PQfdBOXFGp3mknW9kJ1nFbq856yKeacYNTbVJeUdpoS_ZyGrmnolzQq-_HVuAwzuL_kn_VX4GIPPPkJdv836R9frvfK34QllH8</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Soumri, N.</creator><creator>Carabaño, Maria J.</creator><creator>González‐Recio, O.</creator><creator>Bedhiaf‐Romdhani, S.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8140-7256</orcidid><orcidid>https://orcid.org/0000-0002-8602-9474</orcidid><orcidid>https://orcid.org/0000-0002-9106-4063</orcidid><orcidid>https://orcid.org/0000-0002-3087-9170</orcidid></search><sort><creationdate>202307</creationdate><title>Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins</title><author>Soumri, N. ; Carabaño, Maria J. ; González‐Recio, O. ; Bedhiaf‐Romdhani, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3480-9c3d24b89d9954d3a84e5b2784cbc1fcd5c04fdede78d5f03cda6894207236893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Genetic improvement</topic><topic>genetic parameters</topic><topic>Genetic transformation</topic><topic>Heritability</topic><topic>Holstein</topic><topic>Lactation</topic><topic>Mathematical models</topic><topic>Milk</topic><topic>model comparison</topic><topic>persistency</topic><topic>Polynomials</topic><topic>Proteins</topic><topic>random regression</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soumri, N.</creatorcontrib><creatorcontrib>Carabaño, Maria J.</creatorcontrib><creatorcontrib>González‐Recio, O.</creatorcontrib><creatorcontrib>Bedhiaf‐Romdhani, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of animal breeding and genetics (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soumri, N.</au><au>Carabaño, Maria J.</au><au>González‐Recio, O.</au><au>Bedhiaf‐Romdhani, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins</atitle><jtitle>Journal of animal breeding and genetics (1986)</jtitle><addtitle>J Anim Breed Genet</addtitle><date>2023-07</date><risdate>2023</risdate><volume>140</volume><issue>4</issue><spage>440</spage><epage>461</epage><pages>440-461</pages><issn>0931-2668</issn><eissn>1439-0388</eissn><abstract>This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>36965122</pmid><doi>10.1111/jbg.12770</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8140-7256</orcidid><orcidid>https://orcid.org/0000-0002-8602-9474</orcidid><orcidid>https://orcid.org/0000-0002-9106-4063</orcidid><orcidid>https://orcid.org/0000-0002-3087-9170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0931-2668 |
ispartof | Journal of animal breeding and genetics (1986), 2023-07, Vol.140 (4), p.440-461 |
issn | 0931-2668 1439-0388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2791381584 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bayesian analysis Genetic improvement genetic parameters Genetic transformation Heritability Holstein Lactation Mathematical models Milk model comparison persistency Polynomials Proteins random regression Regression analysis Regression models Statistical analysis Transformations (mathematics) |
title | Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20regression%20models%20to%20estimate%20genetic%20parameters%20for%20milk%20yield,%20fat,%20and%20protein%20contents%20in%20Tunisian%20Holsteins&rft.jtitle=Journal%20of%20animal%20breeding%20and%20genetics%20(1986)&rft.au=Soumri,%20N.&rft.date=2023-07&rft.volume=140&rft.issue=4&rft.spage=440&rft.epage=461&rft.pages=440-461&rft.issn=0931-2668&rft.eissn=1439-0388&rft_id=info:doi/10.1111/jbg.12770&rft_dat=%3Cproquest_cross%3E2791381584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825749631&rft_id=info:pmid/36965122&rfr_iscdi=true |