Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile

Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial pathogenesis 2023-05, Vol.178, p.106083-106083, Article 106083
Hauptverfasser: Anusha, M., Tejaswini, V., Udhaya Kumar, S., Prashantha, C.N., Vasudevan, Karthick, George Priya Doss, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106083
container_issue
container_start_page 106083
container_title Microbial pathogenesis
container_volume 178
creator Anusha, M.
Tejaswini, V.
Udhaya Kumar, S.
Prashantha, C.N.
Vasudevan, Karthick
George Priya Doss, C.
description Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is an opportunistic nosocomial bacterial strain that has acquired exogenous AMR genes that confer resistance to antimicrobials such as erythromycin, azithromycin, clarithromycin, rifampicin, moxifloxacin, fluoroquinolones, vancomycin, and others. A network of interactions, including 20 AMR genes, was created and analyzed. In functional enrichment analysis, Cellular components (CC), Molecular Functions (MF), and Biological Processes (BP) were discovered to have substantial involvement. Mutations in the rpl genes, which encode ribosomal proteins, confer resistance in Gram-positive bacteria. Full erythromycin and azithromycin cross-resistance can be conferred if more than one of the abovementioned genes is present. In the enriched BP, rps genes related to transcriptional regulation and biosynthesis were found. The genes belong to the rpoB gene family, which has previously been related to rifampicin resistance. The genes rpoB, gyrA, gyrB, rpoS, rpl genes, rps genes, and Van genes are thought to be the hub genes implicated in resistance in C. difficile. As a result, new medications could be developed using these genes. Overall, our observations provide a thorough understanding of C. difficile AMR mechanisms. •Antimicrobial resistance is a global problem that requires understanding of AMR genes and mechanisms.•C. difficile is a bacterial strain that has acquired exogenous AMR genes, leading to resistance to multiple antimicrobials.•The 20 genes in C. difficile revealed significant transcriptional regulation, biosynthesis, and rifampicin resistance in AMR.•Mutations in rpl genes can lead to cross-resistance to erythromycin and azithromycin if more than one gene is present.•rpoB, gyrA, gyrB, rpoS, rpl, rps, and van are hub genes implicated in C. difficile resistance.•These could be targeted for developing new medications to combat AMR.
doi_str_mv 10.1016/j.micpath.2023.106083
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2791373373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088240102300116X</els_id><sourcerecordid>2791373373</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1125-4156060c00586c64c0cfe9326a0df6b5595095dc88ee81e9b35f8b4688ce2dce3</originalsourceid><addsrcrecordid>eNo1kU1rHDEMhk1JaTbb_oSGOeYyW3k8duxTCEuaBgK9tGfjsTWstvOxsT0J-ff1drcgEEgP0iu9jH3lsOHA1bf9ZiR_cHm3aaARpaZAiw9sxcGomjegL9gKtG7qFjhcsquU9gBgWmE-sUuhjNSqlSsWH3HCasL8Nsc_FU0Zo_OZ5qlykxveE6UqzxUOi6fgMlZ5h6WTqSyPc0duqCIWKLvJYzWi37mJ0pjKpH_odphTjhRoGQP1PXka8DP72Lsh4ZdzXrPf3x9-bX_Uzz8fn7b3zzVy3si65VKVozxAkepV68H3aESjHIRedVIaCUYGrzWi5mg6IXvdtUprj03wKNbs5jT3EOeXBVO2IyWPw-AmnJdkm1vDxa04xppdn9GlGzHYQ6TRxXf7_08FuDsBWAS_EkabPGG5OVBEn22YyXKwR2fs3p6dsUdn7MkZ8ReF2oRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791373373</pqid></control><display><type>article</type><title>Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Anusha, M. ; Tejaswini, V. ; Udhaya Kumar, S. ; Prashantha, C.N. ; Vasudevan, Karthick ; George Priya Doss, C.</creator><creatorcontrib>Anusha, M. ; Tejaswini, V. ; Udhaya Kumar, S. ; Prashantha, C.N. ; Vasudevan, Karthick ; George Priya Doss, C.</creatorcontrib><description>Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is an opportunistic nosocomial bacterial strain that has acquired exogenous AMR genes that confer resistance to antimicrobials such as erythromycin, azithromycin, clarithromycin, rifampicin, moxifloxacin, fluoroquinolones, vancomycin, and others. A network of interactions, including 20 AMR genes, was created and analyzed. In functional enrichment analysis, Cellular components (CC), Molecular Functions (MF), and Biological Processes (BP) were discovered to have substantial involvement. Mutations in the rpl genes, which encode ribosomal proteins, confer resistance in Gram-positive bacteria. Full erythromycin and azithromycin cross-resistance can be conferred if more than one of the abovementioned genes is present. In the enriched BP, rps genes related to transcriptional regulation and biosynthesis were found. The genes belong to the rpoB gene family, which has previously been related to rifampicin resistance. The genes rpoB, gyrA, gyrB, rpoS, rpl genes, rps genes, and Van genes are thought to be the hub genes implicated in resistance in C. difficile. As a result, new medications could be developed using these genes. Overall, our observations provide a thorough understanding of C. difficile AMR mechanisms. •Antimicrobial resistance is a global problem that requires understanding of AMR genes and mechanisms.•C. difficile is a bacterial strain that has acquired exogenous AMR genes, leading to resistance to multiple antimicrobials.•The 20 genes in C. difficile revealed significant transcriptional regulation, biosynthesis, and rifampicin resistance in AMR.•Mutations in rpl genes can lead to cross-resistance to erythromycin and azithromycin if more than one gene is present.•rpoB, gyrA, gyrB, rpoS, rpl, rps, and van are hub genes implicated in C. difficile resistance.•These could be targeted for developing new medications to combat AMR.</description><identifier>ISSN: 0882-4010</identifier><identifier>EISSN: 1096-1208</identifier><identifier>DOI: 10.1016/j.micpath.2023.106083</identifier><identifier>PMID: 36958645</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anti-Bacterial Agents - pharmacology ; Anti-Infective Agents - pharmacology ; Azithromycin ; Clostridioides difficile - genetics ; Clostridium difficile ; Clustering analysis ; Drug Resistance, Bacterial - genetics ; Erythromycin ; Functional enrichment analysis ; Gene ontology ; Gene Regulatory Networks ; Microbial Sensitivity Tests ; Rifampin ; Topological parameters</subject><ispartof>Microbial pathogenesis, 2023-05, Vol.178, p.106083-106083, Article 106083</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6639-3746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S088240102300116X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36958645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anusha, M.</creatorcontrib><creatorcontrib>Tejaswini, V.</creatorcontrib><creatorcontrib>Udhaya Kumar, S.</creatorcontrib><creatorcontrib>Prashantha, C.N.</creatorcontrib><creatorcontrib>Vasudevan, Karthick</creatorcontrib><creatorcontrib>George Priya Doss, C.</creatorcontrib><title>Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile</title><title>Microbial pathogenesis</title><addtitle>Microb Pathog</addtitle><description>Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is an opportunistic nosocomial bacterial strain that has acquired exogenous AMR genes that confer resistance to antimicrobials such as erythromycin, azithromycin, clarithromycin, rifampicin, moxifloxacin, fluoroquinolones, vancomycin, and others. A network of interactions, including 20 AMR genes, was created and analyzed. In functional enrichment analysis, Cellular components (CC), Molecular Functions (MF), and Biological Processes (BP) were discovered to have substantial involvement. Mutations in the rpl genes, which encode ribosomal proteins, confer resistance in Gram-positive bacteria. Full erythromycin and azithromycin cross-resistance can be conferred if more than one of the abovementioned genes is present. In the enriched BP, rps genes related to transcriptional regulation and biosynthesis were found. The genes belong to the rpoB gene family, which has previously been related to rifampicin resistance. The genes rpoB, gyrA, gyrB, rpoS, rpl genes, rps genes, and Van genes are thought to be the hub genes implicated in resistance in C. difficile. As a result, new medications could be developed using these genes. Overall, our observations provide a thorough understanding of C. difficile AMR mechanisms. •Antimicrobial resistance is a global problem that requires understanding of AMR genes and mechanisms.•C. difficile is a bacterial strain that has acquired exogenous AMR genes, leading to resistance to multiple antimicrobials.•The 20 genes in C. difficile revealed significant transcriptional regulation, biosynthesis, and rifampicin resistance in AMR.•Mutations in rpl genes can lead to cross-resistance to erythromycin and azithromycin if more than one gene is present.•rpoB, gyrA, gyrB, rpoS, rpl, rps, and van are hub genes implicated in C. difficile resistance.•These could be targeted for developing new medications to combat AMR.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Azithromycin</subject><subject>Clostridioides difficile - genetics</subject><subject>Clostridium difficile</subject><subject>Clustering analysis</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Erythromycin</subject><subject>Functional enrichment analysis</subject><subject>Gene ontology</subject><subject>Gene Regulatory Networks</subject><subject>Microbial Sensitivity Tests</subject><subject>Rifampin</subject><subject>Topological parameters</subject><issn>0882-4010</issn><issn>1096-1208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kU1rHDEMhk1JaTbb_oSGOeYyW3k8duxTCEuaBgK9tGfjsTWstvOxsT0J-ff1drcgEEgP0iu9jH3lsOHA1bf9ZiR_cHm3aaARpaZAiw9sxcGomjegL9gKtG7qFjhcsquU9gBgWmE-sUuhjNSqlSsWH3HCasL8Nsc_FU0Zo_OZ5qlykxveE6UqzxUOi6fgMlZ5h6WTqSyPc0duqCIWKLvJYzWi37mJ0pjKpH_odphTjhRoGQP1PXka8DP72Lsh4ZdzXrPf3x9-bX_Uzz8fn7b3zzVy3si65VKVozxAkepV68H3aESjHIRedVIaCUYGrzWi5mg6IXvdtUprj03wKNbs5jT3EOeXBVO2IyWPw-AmnJdkm1vDxa04xppdn9GlGzHYQ6TRxXf7_08FuDsBWAS_EkabPGG5OVBEn22YyXKwR2fs3p6dsUdn7MkZ8ReF2oRY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Anusha, M.</creator><creator>Tejaswini, V.</creator><creator>Udhaya Kumar, S.</creator><creator>Prashantha, C.N.</creator><creator>Vasudevan, Karthick</creator><creator>George Priya Doss, C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6639-3746</orcidid></search><sort><creationdate>202305</creationdate><title>Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile</title><author>Anusha, M. ; Tejaswini, V. ; Udhaya Kumar, S. ; Prashantha, C.N. ; Vasudevan, Karthick ; George Priya Doss, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1125-4156060c00586c64c0cfe9326a0df6b5595095dc88ee81e9b35f8b4688ce2dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Azithromycin</topic><topic>Clostridioides difficile - genetics</topic><topic>Clostridium difficile</topic><topic>Clustering analysis</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Erythromycin</topic><topic>Functional enrichment analysis</topic><topic>Gene ontology</topic><topic>Gene Regulatory Networks</topic><topic>Microbial Sensitivity Tests</topic><topic>Rifampin</topic><topic>Topological parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anusha, M.</creatorcontrib><creatorcontrib>Tejaswini, V.</creatorcontrib><creatorcontrib>Udhaya Kumar, S.</creatorcontrib><creatorcontrib>Prashantha, C.N.</creatorcontrib><creatorcontrib>Vasudevan, Karthick</creatorcontrib><creatorcontrib>George Priya Doss, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial pathogenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anusha, M.</au><au>Tejaswini, V.</au><au>Udhaya Kumar, S.</au><au>Prashantha, C.N.</au><au>Vasudevan, Karthick</au><au>George Priya Doss, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile</atitle><jtitle>Microbial pathogenesis</jtitle><addtitle>Microb Pathog</addtitle><date>2023-05</date><risdate>2023</risdate><volume>178</volume><spage>106083</spage><epage>106083</epage><pages>106083-106083</pages><artnum>106083</artnum><issn>0882-4010</issn><eissn>1096-1208</eissn><abstract>Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is an opportunistic nosocomial bacterial strain that has acquired exogenous AMR genes that confer resistance to antimicrobials such as erythromycin, azithromycin, clarithromycin, rifampicin, moxifloxacin, fluoroquinolones, vancomycin, and others. A network of interactions, including 20 AMR genes, was created and analyzed. In functional enrichment analysis, Cellular components (CC), Molecular Functions (MF), and Biological Processes (BP) were discovered to have substantial involvement. Mutations in the rpl genes, which encode ribosomal proteins, confer resistance in Gram-positive bacteria. Full erythromycin and azithromycin cross-resistance can be conferred if more than one of the abovementioned genes is present. In the enriched BP, rps genes related to transcriptional regulation and biosynthesis were found. The genes belong to the rpoB gene family, which has previously been related to rifampicin resistance. The genes rpoB, gyrA, gyrB, rpoS, rpl genes, rps genes, and Van genes are thought to be the hub genes implicated in resistance in C. difficile. As a result, new medications could be developed using these genes. Overall, our observations provide a thorough understanding of C. difficile AMR mechanisms. •Antimicrobial resistance is a global problem that requires understanding of AMR genes and mechanisms.•C. difficile is a bacterial strain that has acquired exogenous AMR genes, leading to resistance to multiple antimicrobials.•The 20 genes in C. difficile revealed significant transcriptional regulation, biosynthesis, and rifampicin resistance in AMR.•Mutations in rpl genes can lead to cross-resistance to erythromycin and azithromycin if more than one gene is present.•rpoB, gyrA, gyrB, rpoS, rpl, rps, and van are hub genes implicated in C. difficile resistance.•These could be targeted for developing new medications to combat AMR.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36958645</pmid><doi>10.1016/j.micpath.2023.106083</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6639-3746</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0882-4010
ispartof Microbial pathogenesis, 2023-05, Vol.178, p.106083-106083, Article 106083
issn 0882-4010
1096-1208
language eng
recordid cdi_proquest_miscellaneous_2791373373
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anti-Bacterial Agents - pharmacology
Anti-Infective Agents - pharmacology
Azithromycin
Clostridioides difficile - genetics
Clostridium difficile
Clustering analysis
Drug Resistance, Bacterial - genetics
Erythromycin
Functional enrichment analysis
Gene ontology
Gene Regulatory Networks
Microbial Sensitivity Tests
Rifampin
Topological parameters
title Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20network%20interaction%20analysis%20to%20elucidate%20the%20antimicrobial%20resistance%20mechanisms%20in%20the%20Clostridiumdifficile&rft.jtitle=Microbial%20pathogenesis&rft.au=Anusha,%20M.&rft.date=2023-05&rft.volume=178&rft.spage=106083&rft.epage=106083&rft.pages=106083-106083&rft.artnum=106083&rft.issn=0882-4010&rft.eissn=1096-1208&rft_id=info:doi/10.1016/j.micpath.2023.106083&rft_dat=%3Cproquest_pubme%3E2791373373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791373373&rft_id=info:pmid/36958645&rft_els_id=S088240102300116X&rfr_iscdi=true