On-line emission and economic load dispatch using adaptive Hopfield neural network

This paper presents an adaptive Hopfield neural network (AHNN) based methodology, where the slope of the activation function is adjusted, for finding approximate Pareto solutions for the multi-objective optimization problem of emission and economic load dispatch (EELD). We have placed emphasis on fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing 2003-02, Vol.2 (4), p.297-305
Hauptverfasser: Balakrishnan, S., Kannan, P.S., Aravindan, C., Subathra, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an adaptive Hopfield neural network (AHNN) based methodology, where the slope of the activation function is adjusted, for finding approximate Pareto solutions for the multi-objective optimization problem of emission and economic load dispatch (EELD). We have placed emphasis on finding solutions quickly, rather than the global Pareto solutions, so that our algorithm can be employed in large on-line power systems where variations in load are quite frequent. To enable faster convergence, adaptive learning rates have been developed by using energy function and applied to the slope adjustment method. The proposed algorithm has been tested on selected I II bus benchmark systems. The convergence of AHNN is found to be nearly 50% faster than the non- adaptive version.
ISSN:1568-4946
DOI:10.1016/S1568-4946(02)00062-5