Insights into non-adiabatic-equilibrium flame temperatures during millimeter-size vortex/flame interactions

Previous experimental and numerical studies have demonstrated that local flame temperatures can significantly increase above or decrease below the adiabatic-equilibrium flame temperature during millimeter-size vortex/flame interactions. Such large excursions in temperature are not observed in centim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2003-03, Vol.132 (4), p.639-651
Hauptverfasser: Katta a, V.R, Meyer, T.R, Gord, J.R, Roquemore, W.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 4
container_start_page 639
container_title Combustion and flame
container_volume 132
creator Katta a, V.R
Meyer, T.R
Gord, J.R
Roquemore, W.M
description Previous experimental and numerical studies have demonstrated that local flame temperatures can significantly increase above or decrease below the adiabatic-equilibrium flame temperature during millimeter-size vortex/flame interactions. Such large excursions in temperature are not observed in centimeter-size vortex/flame interactions. To identify the physical mechanisms responsible for these super- or sub-adiabatic-equilibrium flame temperatures, numerical studies have been conducted for millimeter-size vortex/flame interactions in a hydrogen-air, opposing-jet diffusion flame. Contrary to expectations, preferential diffusion between H 2 and O 2 and geometrical curvature are not responsible for these variations in local flame temperature. This was demonstrated through simulations made by forcing the diffusion coefficients of H 2 and O 2 to be equal and thereby eliminating preferential diffusion. Propagation of flame into small (∼1 mm) vortices suggested that the amount of reactant carried by such a small vortex is not sufficient to feed the flame with fresh reactant during the entire vortex/flame interaction process. Various numerical experiments showed that the reactant-limiting characteristics associated with the millimeter-size vortices and the local Lewis number (not preferential diffusion) are responsible for the generation of flame temperature that is different from the adiabatic-equilibrium value. The reactant-deficient nature of the millimeter-size vortices forces the combustion products to be entrained into the vortex. While a greater-than-unity Lewis number results in pre-heating of the reactant through the product entrainment, a less-than-unity Lewis number causes cooling of the reactant. Contrary to this behavior, a centimeter-size large vortex wraps and maintains the flame around its outer perimeter by feeding the flame with fresh reactant throughout the interaction process, thereby rendering the flame unaffected by the Lewis number. Since turbulent flames generally involve interactions with small-size vortices, the physical mechanisms described here should be considered when developing mathematical models for turbulent flames.
doi_str_mv 10.1016/S0010-2180(02)00517-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27901456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218002005175</els_id><sourcerecordid>27901456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-864aa0512b27ae67973865a99857ef593a1f14e92cb978951dcac3bdfd2b1043</originalsourceid><addsrcrecordid>eNqFkMFu1TAQRS0EEo_CJyBlA4KF6diJ43iFUAVtpUos6N6aOJMykDivtlMVvp68vgqWrGZz7r2aI8RrBR8UqPb0G4ACqVUH70C_BzDKSvNE7JQxrdROq6di9xd5Ll7k_AMAbFPXO_HzMma--V5yxbEsVVyixIGxx8JB0u3KE_eJ17kaJ5ypKjTvKWFZE-VqWBPHm2rmaeKZCiWZ-TdVd0sqdH96DGytGx8KLzG_FM9GnDK9erwn4vrL5-uzC3n19fzy7NOVDHXbFdm1DeL2hO61RWqts3XXGnSuM5ZG42pUo2rI6dA72zmjhoCh7odx0L2Cpj4Rb4-1-7TcrpSLnzkHmiaMtKzZa-tANabdQHMEQ1pyTjT6feIZ0y-vwB_M-gez_qDNg_YPZr3Zcm8eBzAHnMaEMXD-F25sA11z6P945Gh79o4p-RyYYqCBE4Xih4X_s_QHixyPbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27901456</pqid></control><display><type>article</type><title>Insights into non-adiabatic-equilibrium flame temperatures during millimeter-size vortex/flame interactions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Katta a, V.R ; Meyer, T.R ; Gord, J.R ; Roquemore, W.M</creator><creatorcontrib>Katta a, V.R ; Meyer, T.R ; Gord, J.R ; Roquemore, W.M</creatorcontrib><description>Previous experimental and numerical studies have demonstrated that local flame temperatures can significantly increase above or decrease below the adiabatic-equilibrium flame temperature during millimeter-size vortex/flame interactions. Such large excursions in temperature are not observed in centimeter-size vortex/flame interactions. To identify the physical mechanisms responsible for these super- or sub-adiabatic-equilibrium flame temperatures, numerical studies have been conducted for millimeter-size vortex/flame interactions in a hydrogen-air, opposing-jet diffusion flame. Contrary to expectations, preferential diffusion between H 2 and O 2 and geometrical curvature are not responsible for these variations in local flame temperature. This was demonstrated through simulations made by forcing the diffusion coefficients of H 2 and O 2 to be equal and thereby eliminating preferential diffusion. Propagation of flame into small (∼1 mm) vortices suggested that the amount of reactant carried by such a small vortex is not sufficient to feed the flame with fresh reactant during the entire vortex/flame interaction process. Various numerical experiments showed that the reactant-limiting characteristics associated with the millimeter-size vortices and the local Lewis number (not preferential diffusion) are responsible for the generation of flame temperature that is different from the adiabatic-equilibrium value. The reactant-deficient nature of the millimeter-size vortices forces the combustion products to be entrained into the vortex. While a greater-than-unity Lewis number results in pre-heating of the reactant through the product entrainment, a less-than-unity Lewis number causes cooling of the reactant. Contrary to this behavior, a centimeter-size large vortex wraps and maintains the flame around its outer perimeter by feeding the flame with fresh reactant throughout the interaction process, thereby rendering the flame unaffected by the Lewis number. Since turbulent flames generally involve interactions with small-size vortices, the physical mechanisms described here should be considered when developing mathematical models for turbulent flames.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/S0010-2180(02)00517-5</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Combustion of gaseous fuels ; Combustion. Flame ; Diffusion flames ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Non-adiabatic temperature ; Preferential diffusion ; Theoretical studies. Data and constants. Metering ; Turbulence ; Vortex/flame interactions</subject><ispartof>Combustion and flame, 2003-03, Vol.132 (4), p.639-651</ispartof><rights>2003 The Combustion Institute</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-864aa0512b27ae67973865a99857ef593a1f14e92cb978951dcac3bdfd2b1043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-2180(02)00517-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14740846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katta a, V.R</creatorcontrib><creatorcontrib>Meyer, T.R</creatorcontrib><creatorcontrib>Gord, J.R</creatorcontrib><creatorcontrib>Roquemore, W.M</creatorcontrib><title>Insights into non-adiabatic-equilibrium flame temperatures during millimeter-size vortex/flame interactions</title><title>Combustion and flame</title><description>Previous experimental and numerical studies have demonstrated that local flame temperatures can significantly increase above or decrease below the adiabatic-equilibrium flame temperature during millimeter-size vortex/flame interactions. Such large excursions in temperature are not observed in centimeter-size vortex/flame interactions. To identify the physical mechanisms responsible for these super- or sub-adiabatic-equilibrium flame temperatures, numerical studies have been conducted for millimeter-size vortex/flame interactions in a hydrogen-air, opposing-jet diffusion flame. Contrary to expectations, preferential diffusion between H 2 and O 2 and geometrical curvature are not responsible for these variations in local flame temperature. This was demonstrated through simulations made by forcing the diffusion coefficients of H 2 and O 2 to be equal and thereby eliminating preferential diffusion. Propagation of flame into small (∼1 mm) vortices suggested that the amount of reactant carried by such a small vortex is not sufficient to feed the flame with fresh reactant during the entire vortex/flame interaction process. Various numerical experiments showed that the reactant-limiting characteristics associated with the millimeter-size vortices and the local Lewis number (not preferential diffusion) are responsible for the generation of flame temperature that is different from the adiabatic-equilibrium value. The reactant-deficient nature of the millimeter-size vortices forces the combustion products to be entrained into the vortex. While a greater-than-unity Lewis number results in pre-heating of the reactant through the product entrainment, a less-than-unity Lewis number causes cooling of the reactant. Contrary to this behavior, a centimeter-size large vortex wraps and maintains the flame around its outer perimeter by feeding the flame with fresh reactant throughout the interaction process, thereby rendering the flame unaffected by the Lewis number. Since turbulent flames generally involve interactions with small-size vortices, the physical mechanisms described here should be considered when developing mathematical models for turbulent flames.</description><subject>Applied sciences</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Diffusion flames</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Non-adiabatic temperature</subject><subject>Preferential diffusion</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Turbulence</subject><subject>Vortex/flame interactions</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1TAQRS0EEo_CJyBlA4KF6diJ43iFUAVtpUos6N6aOJMykDivtlMVvp68vgqWrGZz7r2aI8RrBR8UqPb0G4ACqVUH70C_BzDKSvNE7JQxrdROq6di9xd5Ll7k_AMAbFPXO_HzMma--V5yxbEsVVyixIGxx8JB0u3KE_eJ17kaJ5ypKjTvKWFZE-VqWBPHm2rmaeKZCiWZ-TdVd0sqdH96DGytGx8KLzG_FM9GnDK9erwn4vrL5-uzC3n19fzy7NOVDHXbFdm1DeL2hO61RWqts3XXGnSuM5ZG42pUo2rI6dA72zmjhoCh7odx0L2Cpj4Rb4-1-7TcrpSLnzkHmiaMtKzZa-tANabdQHMEQ1pyTjT6feIZ0y-vwB_M-gez_qDNg_YPZr3Zcm8eBzAHnMaEMXD-F25sA11z6P945Gh79o4p-RyYYqCBE4Xih4X_s_QHixyPbg</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Katta a, V.R</creator><creator>Meyer, T.R</creator><creator>Gord, J.R</creator><creator>Roquemore, W.M</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>Insights into non-adiabatic-equilibrium flame temperatures during millimeter-size vortex/flame interactions</title><author>Katta a, V.R ; Meyer, T.R ; Gord, J.R ; Roquemore, W.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-864aa0512b27ae67973865a99857ef593a1f14e92cb978951dcac3bdfd2b1043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Diffusion flames</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Non-adiabatic temperature</topic><topic>Preferential diffusion</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Turbulence</topic><topic>Vortex/flame interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katta a, V.R</creatorcontrib><creatorcontrib>Meyer, T.R</creatorcontrib><creatorcontrib>Gord, J.R</creatorcontrib><creatorcontrib>Roquemore, W.M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katta a, V.R</au><au>Meyer, T.R</au><au>Gord, J.R</au><au>Roquemore, W.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into non-adiabatic-equilibrium flame temperatures during millimeter-size vortex/flame interactions</atitle><jtitle>Combustion and flame</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>132</volume><issue>4</issue><spage>639</spage><epage>651</epage><pages>639-651</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>Previous experimental and numerical studies have demonstrated that local flame temperatures can significantly increase above or decrease below the adiabatic-equilibrium flame temperature during millimeter-size vortex/flame interactions. Such large excursions in temperature are not observed in centimeter-size vortex/flame interactions. To identify the physical mechanisms responsible for these super- or sub-adiabatic-equilibrium flame temperatures, numerical studies have been conducted for millimeter-size vortex/flame interactions in a hydrogen-air, opposing-jet diffusion flame. Contrary to expectations, preferential diffusion between H 2 and O 2 and geometrical curvature are not responsible for these variations in local flame temperature. This was demonstrated through simulations made by forcing the diffusion coefficients of H 2 and O 2 to be equal and thereby eliminating preferential diffusion. Propagation of flame into small (∼1 mm) vortices suggested that the amount of reactant carried by such a small vortex is not sufficient to feed the flame with fresh reactant during the entire vortex/flame interaction process. Various numerical experiments showed that the reactant-limiting characteristics associated with the millimeter-size vortices and the local Lewis number (not preferential diffusion) are responsible for the generation of flame temperature that is different from the adiabatic-equilibrium value. The reactant-deficient nature of the millimeter-size vortices forces the combustion products to be entrained into the vortex. While a greater-than-unity Lewis number results in pre-heating of the reactant through the product entrainment, a less-than-unity Lewis number causes cooling of the reactant. Contrary to this behavior, a centimeter-size large vortex wraps and maintains the flame around its outer perimeter by feeding the flame with fresh reactant throughout the interaction process, thereby rendering the flame unaffected by the Lewis number. Since turbulent flames generally involve interactions with small-size vortices, the physical mechanisms described here should be considered when developing mathematical models for turbulent flames.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0010-2180(02)00517-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2003-03, Vol.132 (4), p.639-651
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_27901456
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Combustion of gaseous fuels
Combustion. Flame
Diffusion flames
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Non-adiabatic temperature
Preferential diffusion
Theoretical studies. Data and constants. Metering
Turbulence
Vortex/flame interactions
title Insights into non-adiabatic-equilibrium flame temperatures during millimeter-size vortex/flame interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20non-adiabatic-equilibrium%20flame%20temperatures%20during%20millimeter-size%20vortex/flame%20interactions&rft.jtitle=Combustion%20and%20flame&rft.au=Katta%20a,%20V.R&rft.date=2003-03-01&rft.volume=132&rft.issue=4&rft.spage=639&rft.epage=651&rft.pages=639-651&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/S0010-2180(02)00517-5&rft_dat=%3Cproquest_cross%3E27901456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27901456&rft_id=info:pmid/&rft_els_id=S0010218002005175&rfr_iscdi=true