Hybrid Composite Cable Based on Steel and Carbon
Combination of steel and carbon enables to obtain a hybrid composite cable with increased strain in comparison with the carbon composite cables and decreased dead weight in comparison with the steel cables. Hybrid composite cable contains three layers: carbon fiber composite cable (CFCC) core, glass...
Gespeichert in:
Veröffentlicht in: | Medžiagotyra 2003-01, Vol.9 (1), p.27-30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Medžiagotyra |
container_volume | 9 |
creator | Serdjuks, D Rocens, K |
description | Combination of steel and carbon enables to obtain a hybrid composite cable with increased strain in comparison with the carbon composite cables and decreased dead weight in comparison with the steel cables. Hybrid composite cable contains three layers: carbon fiber composite cable (CFCC) core, glass fiber reinforced plastic (GFRP) and steel wire strands. CFCC core and steel wire strands take up tension stresses, acting in the cable during the exploitation. The functions of GFRP are distribution of transversal pressure of steel wire strands at the carbon fiber core, and taking up of tension stresses. Volume fractions of steel and carbon are determined basing on the assumption, that in an emergency, when the strain of carbon fiber exceeds the ultimate value and these fibers are disrupted, strands of steel wire must be able to take up tension stresses, acting in the cable. The principle of hybrid composite cable work was illustrated on the example of separate cable. Opportunity to decrease dead weight of the cable is stated. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27901321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27901321</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_279013213</originalsourceid><addsrcrecordid>eNpjYeA0NLY00jU0NjLgYOAqLs4yMDAzM7Cw4GQw8KhMKspMUXDOzy3IL84sSVVwTkzKSVVwSixOTVHIz1MILklNzVFIzAMqSSxKys_jYWBNS8wpTuWF0twMam6uIc4eugVF-YWlqcUl8bmZxcmpOTmJean5pcXxRuaWBkB7DY2JVggA93M0rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27901321</pqid></control><display><type>article</type><title>Hybrid Composite Cable Based on Steel and Carbon</title><source>Free Full-Text Journals in Chemistry</source><creator>Serdjuks, D ; Rocens, K</creator><creatorcontrib>Serdjuks, D ; Rocens, K</creatorcontrib><description>Combination of steel and carbon enables to obtain a hybrid composite cable with increased strain in comparison with the carbon composite cables and decreased dead weight in comparison with the steel cables. Hybrid composite cable contains three layers: carbon fiber composite cable (CFCC) core, glass fiber reinforced plastic (GFRP) and steel wire strands. CFCC core and steel wire strands take up tension stresses, acting in the cable during the exploitation. The functions of GFRP are distribution of transversal pressure of steel wire strands at the carbon fiber core, and taking up of tension stresses. Volume fractions of steel and carbon are determined basing on the assumption, that in an emergency, when the strain of carbon fiber exceeds the ultimate value and these fibers are disrupted, strands of steel wire must be able to take up tension stresses, acting in the cable. The principle of hybrid composite cable work was illustrated on the example of separate cable. Opportunity to decrease dead weight of the cable is stated.</description><identifier>ISSN: 1392-1320</identifier><language>eng</language><ispartof>Medžiagotyra, 2003-01, Vol.9 (1), p.27-30</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Serdjuks, D</creatorcontrib><creatorcontrib>Rocens, K</creatorcontrib><title>Hybrid Composite Cable Based on Steel and Carbon</title><title>Medžiagotyra</title><description>Combination of steel and carbon enables to obtain a hybrid composite cable with increased strain in comparison with the carbon composite cables and decreased dead weight in comparison with the steel cables. Hybrid composite cable contains three layers: carbon fiber composite cable (CFCC) core, glass fiber reinforced plastic (GFRP) and steel wire strands. CFCC core and steel wire strands take up tension stresses, acting in the cable during the exploitation. The functions of GFRP are distribution of transversal pressure of steel wire strands at the carbon fiber core, and taking up of tension stresses. Volume fractions of steel and carbon are determined basing on the assumption, that in an emergency, when the strain of carbon fiber exceeds the ultimate value and these fibers are disrupted, strands of steel wire must be able to take up tension stresses, acting in the cable. The principle of hybrid composite cable work was illustrated on the example of separate cable. Opportunity to decrease dead weight of the cable is stated.</description><issn>1392-1320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NLY00jU0NjLgYOAqLs4yMDAzM7Cw4GQw8KhMKspMUXDOzy3IL84sSVVwTkzKSVVwSixOTVHIz1MILklNzVFIzAMqSSxKys_jYWBNS8wpTuWF0twMam6uIc4eugVF-YWlqcUl8bmZxcmpOTmJean5pcXxRuaWBkB7DY2JVggA93M0rw</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Serdjuks, D</creator><creator>Rocens, K</creator><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20030101</creationdate><title>Hybrid Composite Cable Based on Steel and Carbon</title><author>Serdjuks, D ; Rocens, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_279013213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serdjuks, D</creatorcontrib><creatorcontrib>Rocens, K</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Medžiagotyra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serdjuks, D</au><au>Rocens, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Composite Cable Based on Steel and Carbon</atitle><jtitle>Medžiagotyra</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>9</volume><issue>1</issue><spage>27</spage><epage>30</epage><pages>27-30</pages><issn>1392-1320</issn><abstract>Combination of steel and carbon enables to obtain a hybrid composite cable with increased strain in comparison with the carbon composite cables and decreased dead weight in comparison with the steel cables. Hybrid composite cable contains three layers: carbon fiber composite cable (CFCC) core, glass fiber reinforced plastic (GFRP) and steel wire strands. CFCC core and steel wire strands take up tension stresses, acting in the cable during the exploitation. The functions of GFRP are distribution of transversal pressure of steel wire strands at the carbon fiber core, and taking up of tension stresses. Volume fractions of steel and carbon are determined basing on the assumption, that in an emergency, when the strain of carbon fiber exceeds the ultimate value and these fibers are disrupted, strands of steel wire must be able to take up tension stresses, acting in the cable. The principle of hybrid composite cable work was illustrated on the example of separate cable. Opportunity to decrease dead weight of the cable is stated.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1392-1320 |
ispartof | Medžiagotyra, 2003-01, Vol.9 (1), p.27-30 |
issn | 1392-1320 |
language | eng |
recordid | cdi_proquest_miscellaneous_27901321 |
source | Free Full-Text Journals in Chemistry |
title | Hybrid Composite Cable Based on Steel and Carbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Composite%20Cable%20Based%20on%20Steel%20and%20Carbon&rft.jtitle=Med%C5%BEiagotyra&rft.au=Serdjuks,%20D&rft.date=2003-01-01&rft.volume=9&rft.issue=1&rft.spage=27&rft.epage=30&rft.pages=27-30&rft.issn=1392-1320&rft_id=info:doi/&rft_dat=%3Cproquest%3E27901321%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27901321&rft_id=info:pmid/&rfr_iscdi=true |