Integration of a turbine expander with an exothermic reactor loop—Flow sheet development and application to ammonia production
This paper investigates the direct integration of a gas turbine power cycle with an ammonia synthesis loop. Such a loop represents a typical reactor–separator system with a recycle stream and cold separation of the product from the recycle loop. The hot reaction products are expanded directly instea...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2003-11, Vol.28 (14), p.1495-1509 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the direct integration of a gas turbine power cycle with an ammonia synthesis loop. Such a loop represents a typical reactor–separator system with a recycle stream and cold separation of the product from the recycle loop. The hot reaction products are expanded directly instead of raising steam in a waste heat boiler to drive a steam turbine. Two new combined power and chemicals production flow sheets are developed for the process. The flow sheets are simulated using the flow sheet simulator AspenPlus (licensed by Aspen Technology, Inc.) and compared to a simulated conventional ammonia synthesis loop. The comparison is based on energy as well as exergy analysis. It was found that the pressure ratio over the turbine expander plays an important role in optimisation of an integrated system, specifically due to the process comprising an equilibrium reaction. The inlet temperature to the reactor changes with changing pressure ratio, which in turn determines the conversion and consequently the heat of reaction that is available to produce power. In terms of the minimum work requirement per kg of product a 75% improvement over the conventional process could be obtained. The work penalty due to refrigeration needed for separation was also accounted for. Furthermore this integrated flow sheet also resulted in a decrease in exergy loss and the loss was more evenly distributed between the various unit operations. A detailed exergy analysis over the various unit operations proved to be useful in explaining the overall differences in exergy loss between the flow sheets. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/S0360-5442(03)00122-1 |