In-Plane Vibrations of a Thin Rotating Disk

A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due to the radial expansion resulting from its rotation. The corresponding nondimensionalized natural frequencies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and acoustics 2003-01, Vol.125 (1), p.68-72
Hauptverfasser: Deshpande, Moreshwar, Mote, C. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 68
container_title Journal of vibration and acoustics
container_volume 125
creator Deshpande, Moreshwar
Mote, C. D
description A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due to the radial expansion resulting from its rotation. The corresponding nondimensionalized natural frequencies are seen to depend only on the nondimensionalized rotation speed and have been calculated. The radially expanded disk configuration is linearly stable over the range of rotation speeds studied here. The sine and cosine modes for all nodal diameters couple to each other at all non-zero rotation speeds and the strength of this coupling increases with rotation speed. This coupling causes the reported frequencies of the stationary disk to split. The zero, one and two nodal diameter in-plane modes do not have a critical speed corresponding to the vanishing of the backward travelling wave frequency. The use of a linear strain measure in earlier work incorrectly predicts instability of the rotating equilibrium and the existence of critical speeds in these modes.
doi_str_mv 10.1115/1.1522419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27898263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27898263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-b4243096a54de7984869ba82c7aa48fba190dd93218789b4e46b95520cca843e3</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKsHz172oiCyNZ-b5Cj1q1BQpHoNs2lWU7fZmuwe_O9NacHTPIbfe8w8hM4JnhBCxC2ZEEEpJ_oAjbJSpdJUHmaNuSo1xvQYnaS0wpgwJsQI3cxC-dpCcMWHryP0vgup6JoCisWXD8Vb1-dd-Czuffo-RUcNtMmd7ecYvT8-LKbP5fzlaTa9m5fAsOrLmlPOsK5A8KWTWnFV6RoUtRKAq6YGovFyqRklSipdc8erWgtBsbWgOHNsjK52uZvY_Qwu9Wbtk3Xt9sxuSIZmm6IVy-D1DrSxSym6xmyiX0P8NQSbbR2GmH0dmb3ch0Ky0DYRgvXp38AFq4iUmbvYcZDWzqy6IYb8q-ESK0nYH43ZZKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27898263</pqid></control><display><type>article</type><title>In-Plane Vibrations of a Thin Rotating Disk</title><source>ASME Transactions Journals (Current)</source><creator>Deshpande, Moreshwar ; Mote, C. D</creator><creatorcontrib>Deshpande, Moreshwar ; Mote, C. D</creatorcontrib><description>A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due to the radial expansion resulting from its rotation. The corresponding nondimensionalized natural frequencies are seen to depend only on the nondimensionalized rotation speed and have been calculated. The radially expanded disk configuration is linearly stable over the range of rotation speeds studied here. The sine and cosine modes for all nodal diameters couple to each other at all non-zero rotation speeds and the strength of this coupling increases with rotation speed. This coupling causes the reported frequencies of the stationary disk to split. The zero, one and two nodal diameter in-plane modes do not have a critical speed corresponding to the vanishing of the backward travelling wave frequency. The use of a linear strain measure in earlier work incorrectly predicts instability of the rotating equilibrium and the existence of critical speeds in these modes.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.1522419</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Journal of vibration and acoustics, 2003-01, Vol.125 (1), p.68-72</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-b4243096a54de7984869ba82c7aa48fba190dd93218789b4e46b95520cca843e3</citedby><cites>FETCH-LOGICAL-a308t-b4243096a54de7984869ba82c7aa48fba190dd93218789b4e46b95520cca843e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14536177$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deshpande, Moreshwar</creatorcontrib><creatorcontrib>Mote, C. D</creatorcontrib><title>In-Plane Vibrations of a Thin Rotating Disk</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due to the radial expansion resulting from its rotation. The corresponding nondimensionalized natural frequencies are seen to depend only on the nondimensionalized rotation speed and have been calculated. The radially expanded disk configuration is linearly stable over the range of rotation speeds studied here. The sine and cosine modes for all nodal diameters couple to each other at all non-zero rotation speeds and the strength of this coupling increases with rotation speed. This coupling causes the reported frequencies of the stationary disk to split. The zero, one and two nodal diameter in-plane modes do not have a critical speed corresponding to the vanishing of the backward travelling wave frequency. The use of a linear strain measure in earlier work incorrectly predicts instability of the rotating equilibrium and the existence of critical speeds in these modes.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKsHz172oiCyNZ-b5Cj1q1BQpHoNs2lWU7fZmuwe_O9NacHTPIbfe8w8hM4JnhBCxC2ZEEEpJ_oAjbJSpdJUHmaNuSo1xvQYnaS0wpgwJsQI3cxC-dpCcMWHryP0vgup6JoCisWXD8Vb1-dd-Czuffo-RUcNtMmd7ecYvT8-LKbP5fzlaTa9m5fAsOrLmlPOsK5A8KWTWnFV6RoUtRKAq6YGovFyqRklSipdc8erWgtBsbWgOHNsjK52uZvY_Qwu9Wbtk3Xt9sxuSIZmm6IVy-D1DrSxSym6xmyiX0P8NQSbbR2GmH0dmb3ch0Ky0DYRgvXp38AFq4iUmbvYcZDWzqy6IYb8q-ESK0nYH43ZZKU</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Deshpande, Moreshwar</creator><creator>Mote, C. D</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20030101</creationdate><title>In-Plane Vibrations of a Thin Rotating Disk</title><author>Deshpande, Moreshwar ; Mote, C. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-b4243096a54de7984869ba82c7aa48fba190dd93218789b4e46b95520cca843e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Moreshwar</creatorcontrib><creatorcontrib>Mote, C. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshpande, Moreshwar</au><au>Mote, C. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Plane Vibrations of a Thin Rotating Disk</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>2003-01-01</date><risdate>2003</risdate><volume>125</volume><issue>1</issue><spage>68</spage><epage>72</epage><pages>68-72</pages><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due to the radial expansion resulting from its rotation. The corresponding nondimensionalized natural frequencies are seen to depend only on the nondimensionalized rotation speed and have been calculated. The radially expanded disk configuration is linearly stable over the range of rotation speeds studied here. The sine and cosine modes for all nodal diameters couple to each other at all non-zero rotation speeds and the strength of this coupling increases with rotation speed. This coupling causes the reported frequencies of the stationary disk to split. The zero, one and two nodal diameter in-plane modes do not have a critical speed corresponding to the vanishing of the backward travelling wave frequency. The use of a linear strain measure in earlier work incorrectly predicts instability of the rotating equilibrium and the existence of critical speeds in these modes.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1522419</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1048-9002
ispartof Journal of vibration and acoustics, 2003-01, Vol.125 (1), p.68-72
issn 1048-9002
1528-8927
language eng
recordid cdi_proquest_miscellaneous_27898263
source ASME Transactions Journals (Current)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title In-Plane Vibrations of a Thin Rotating Disk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Plane%20Vibrations%20of%20a%20Thin%20Rotating%20Disk&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Deshpande,%20Moreshwar&rft.date=2003-01-01&rft.volume=125&rft.issue=1&rft.spage=68&rft.epage=72&rft.pages=68-72&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.1522419&rft_dat=%3Cproquest_cross%3E27898263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27898263&rft_id=info:pmid/&rfr_iscdi=true