Narrow bandgap group III-nitride alloys
High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 e...
Gespeichert in:
Veröffentlicht in: | Physica Status Solidi (b) 2003-11, Vol.240 (2), p.412-416 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 2 |
container_start_page | 412 |
container_title | Physica Status Solidi (b) |
container_volume | 240 |
creator | Wu, J. Walukiewicz, W. Yu, K. M. Ager III, J. W. Haller, E. E. Lu, Hai Schaff, William J. |
description | High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200303475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27897873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27885230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</originalsourceid><addsrcrecordid>eNqNkM1PwjAYhxujiYhePe-inoZv23Vdj0oUlyCi8-PYdKUl08FmC0H-e0dG0Jueenme521-CJ1i6GEAcll7n_cIAAUacbaHOpgRHFLB8D7qAOUQYsHJITry_h0AOKa4gy5GyrlqFeRqPpmqOpi6alkHaZqG82LhiokJVFlWa3-MDqwqvTnZvl30cnvz3L8Lhw-DtH81DHWUUBZakU-4YjYiKgdBNbBIG50nKmJWEIWxaL4TYwGMMoAEx9TamHHKuM4bOKZddN52a1d9Lo1fyFnhtSlLNTfV0kvCE8ETTv8DJow0W3RRrwW1q7x3xsraFTPl1hKD3AwnN8PJ3XCNcLYtK69VaZ2a68L_WIzippw0nGi5VVGa9R9VOc6y6983wtYt_MJ87VzlPmTMaYO_jQYyexqzjD--ynv6DcDJi80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27885230</pqid></control><display><type>article</type><title>Narrow bandgap group III-nitride alloys</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, J. ; Walukiewicz, W. ; Yu, K. M. ; Ager III, J. W. ; Haller, E. E. ; Lu, Hai ; Schaff, William J.</creator><creatorcontrib>Wu, J. ; Walukiewicz, W. ; Yu, K. M. ; Ager III, J. W. ; Haller, E. E. ; Lu, Hai ; Schaff, William J.</creatorcontrib><description>High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>ISSN: 1610-1634</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200303475</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>72.80.Ey ; 78.30.−j ; 78.66.Fd ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Iii-v semiconductors ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Photoluminescence ; Physics</subject><ispartof>Physica Status Solidi (b), 2003-11, Vol.240 (2), p.412-416</ispartof><rights>Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</citedby><cites>FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200303475$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15318528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, J.</creatorcontrib><creatorcontrib>Walukiewicz, W.</creatorcontrib><creatorcontrib>Yu, K. M.</creatorcontrib><creatorcontrib>Ager III, J. W.</creatorcontrib><creatorcontrib>Haller, E. E.</creatorcontrib><creatorcontrib>Lu, Hai</creatorcontrib><creatorcontrib>Schaff, William J.</creatorcontrib><title>Narrow bandgap group III-nitride alloys</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>72.80.Ey</subject><subject>78.30.−j</subject><subject>78.66.Fd</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Iii-v semiconductors</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Photoluminescence</subject><subject>Physics</subject><issn>0370-1972</issn><issn>1610-1634</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkM1PwjAYhxujiYhePe-inoZv23Vdj0oUlyCi8-PYdKUl08FmC0H-e0dG0Jueenme521-CJ1i6GEAcll7n_cIAAUacbaHOpgRHFLB8D7qAOUQYsHJITry_h0AOKa4gy5GyrlqFeRqPpmqOpi6alkHaZqG82LhiokJVFlWa3-MDqwqvTnZvl30cnvz3L8Lhw-DtH81DHWUUBZakU-4YjYiKgdBNbBIG50nKmJWEIWxaL4TYwGMMoAEx9TamHHKuM4bOKZddN52a1d9Lo1fyFnhtSlLNTfV0kvCE8ETTv8DJow0W3RRrwW1q7x3xsraFTPl1hKD3AwnN8PJ3XCNcLYtK69VaZ2a68L_WIzippw0nGi5VVGa9R9VOc6y6983wtYt_MJ87VzlPmTMaYO_jQYyexqzjD--ynv6DcDJi80</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Wu, J.</creator><creator>Walukiewicz, W.</creator><creator>Yu, K. M.</creator><creator>Ager III, J. W.</creator><creator>Haller, E. E.</creator><creator>Lu, Hai</creator><creator>Schaff, William J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>200311</creationdate><title>Narrow bandgap group III-nitride alloys</title><author>Wu, J. ; Walukiewicz, W. ; Yu, K. M. ; Ager III, J. W. ; Haller, E. E. ; Lu, Hai ; Schaff, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>72.80.Ey</topic><topic>78.30.−j</topic><topic>78.66.Fd</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Iii-v semiconductors</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Photoluminescence</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, J.</creatorcontrib><creatorcontrib>Walukiewicz, W.</creatorcontrib><creatorcontrib>Yu, K. M.</creatorcontrib><creatorcontrib>Ager III, J. W.</creatorcontrib><creatorcontrib>Haller, E. E.</creatorcontrib><creatorcontrib>Lu, Hai</creatorcontrib><creatorcontrib>Schaff, William J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, J.</au><au>Walukiewicz, W.</au><au>Yu, K. M.</au><au>Ager III, J. W.</au><au>Haller, E. E.</au><au>Lu, Hai</au><au>Schaff, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Narrow bandgap group III-nitride alloys</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2003-11</date><risdate>2003</risdate><volume>240</volume><issue>2</issue><spage>412</spage><epage>416</epage><pages>412-416</pages><issn>0370-1972</issn><issn>1610-1634</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200303475</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2003-11, Vol.240 (2), p.412-416 |
issn | 0370-1972 1610-1634 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_27897873 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 72.80.Ey 78.30.−j 78.66.Fd Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology Iii-v semiconductors Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of specific thin films Photoluminescence Physics |
title | Narrow bandgap group III-nitride alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Narrow%20bandgap%20group%20III-nitride%20alloys&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Wu,%20J.&rft.date=2003-11&rft.volume=240&rft.issue=2&rft.spage=412&rft.epage=416&rft.pages=412-416&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200303475&rft_dat=%3Cproquest_cross%3E27885230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27885230&rft_id=info:pmid/&rfr_iscdi=true |