Narrow bandgap group III-nitride alloys

High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2003-11, Vol.240 (2), p.412-416
Hauptverfasser: Wu, J., Walukiewicz, W., Yu, K. M., Ager III, J. W., Haller, E. E., Lu, Hai, Schaff, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 2
container_start_page 412
container_title Physica Status Solidi (b)
container_volume 240
creator Wu, J.
Walukiewicz, W.
Yu, K. M.
Ager III, J. W.
Haller, E. E.
Lu, Hai
Schaff, William J.
description High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200303475
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27897873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27885230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</originalsourceid><addsrcrecordid>eNqNkM1PwjAYhxujiYhePe-inoZv23Vdj0oUlyCi8-PYdKUl08FmC0H-e0dG0Jueenme521-CJ1i6GEAcll7n_cIAAUacbaHOpgRHFLB8D7qAOUQYsHJITry_h0AOKa4gy5GyrlqFeRqPpmqOpi6alkHaZqG82LhiokJVFlWa3-MDqwqvTnZvl30cnvz3L8Lhw-DtH81DHWUUBZakU-4YjYiKgdBNbBIG50nKmJWEIWxaL4TYwGMMoAEx9TamHHKuM4bOKZddN52a1d9Lo1fyFnhtSlLNTfV0kvCE8ETTv8DJow0W3RRrwW1q7x3xsraFTPl1hKD3AwnN8PJ3XCNcLYtK69VaZ2a68L_WIzippw0nGi5VVGa9R9VOc6y6983wtYt_MJ87VzlPmTMaYO_jQYyexqzjD--ynv6DcDJi80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27885230</pqid></control><display><type>article</type><title>Narrow bandgap group III-nitride alloys</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, J. ; Walukiewicz, W. ; Yu, K. M. ; Ager III, J. W. ; Haller, E. E. ; Lu, Hai ; Schaff, William J.</creator><creatorcontrib>Wu, J. ; Walukiewicz, W. ; Yu, K. M. ; Ager III, J. W. ; Haller, E. E. ; Lu, Hai ; Schaff, William J.</creatorcontrib><description>High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>ISSN: 1610-1634</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200303475</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>72.80.Ey ; 78.30.−j ; 78.66.Fd ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Iii-v semiconductors ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Photoluminescence ; Physics</subject><ispartof>Physica Status Solidi (b), 2003-11, Vol.240 (2), p.412-416</ispartof><rights>Copyright © 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</citedby><cites>FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200303475$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15318528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, J.</creatorcontrib><creatorcontrib>Walukiewicz, W.</creatorcontrib><creatorcontrib>Yu, K. M.</creatorcontrib><creatorcontrib>Ager III, J. W.</creatorcontrib><creatorcontrib>Haller, E. E.</creatorcontrib><creatorcontrib>Lu, Hai</creatorcontrib><creatorcontrib>Schaff, William J.</creatorcontrib><title>Narrow bandgap group III-nitride alloys</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>72.80.Ey</subject><subject>78.30.−j</subject><subject>78.66.Fd</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Iii-v semiconductors</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Photoluminescence</subject><subject>Physics</subject><issn>0370-1972</issn><issn>1610-1634</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkM1PwjAYhxujiYhePe-inoZv23Vdj0oUlyCi8-PYdKUl08FmC0H-e0dG0Jueenme521-CJ1i6GEAcll7n_cIAAUacbaHOpgRHFLB8D7qAOUQYsHJITry_h0AOKa4gy5GyrlqFeRqPpmqOpi6alkHaZqG82LhiokJVFlWa3-MDqwqvTnZvl30cnvz3L8Lhw-DtH81DHWUUBZakU-4YjYiKgdBNbBIG50nKmJWEIWxaL4TYwGMMoAEx9TamHHKuM4bOKZddN52a1d9Lo1fyFnhtSlLNTfV0kvCE8ETTv8DJow0W3RRrwW1q7x3xsraFTPl1hKD3AwnN8PJ3XCNcLYtK69VaZ2a68L_WIzippw0nGi5VVGa9R9VOc6y6983wtYt_MJ87VzlPmTMaYO_jQYyexqzjD--ynv6DcDJi80</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Wu, J.</creator><creator>Walukiewicz, W.</creator><creator>Yu, K. M.</creator><creator>Ager III, J. W.</creator><creator>Haller, E. E.</creator><creator>Lu, Hai</creator><creator>Schaff, William J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>200311</creationdate><title>Narrow bandgap group III-nitride alloys</title><author>Wu, J. ; Walukiewicz, W. ; Yu, K. M. ; Ager III, J. W. ; Haller, E. E. ; Lu, Hai ; Schaff, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4835-f9bd7a5f42ab093c054cecb8a45f92a1199516190535008163ff657357cbc0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>72.80.Ey</topic><topic>78.30.−j</topic><topic>78.66.Fd</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Iii-v semiconductors</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Photoluminescence</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, J.</creatorcontrib><creatorcontrib>Walukiewicz, W.</creatorcontrib><creatorcontrib>Yu, K. M.</creatorcontrib><creatorcontrib>Ager III, J. W.</creatorcontrib><creatorcontrib>Haller, E. E.</creatorcontrib><creatorcontrib>Lu, Hai</creatorcontrib><creatorcontrib>Schaff, William J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, J.</au><au>Walukiewicz, W.</au><au>Yu, K. M.</au><au>Ager III, J. W.</au><au>Haller, E. E.</au><au>Lu, Hai</au><au>Schaff, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Narrow bandgap group III-nitride alloys</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2003-11</date><risdate>2003</risdate><volume>240</volume><issue>2</issue><spage>412</spage><epage>416</epage><pages>412-416</pages><issn>0370-1972</issn><issn>1610-1634</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>High‐quality wurtzite In‐rich In1−xGaxN (0 ≤ x ≤ 0.5) and In1−yAlyN films (0 ≤ y ≤ 0.25) were grown on sapphire substrates by molecular‐beam epitaxy. Optical absorption, photoluminescence and photomodulated reflectance measurements demonstrate that the fundamental bandgap for InN is only about 0.7 eV. The free electron effective mass is found to vary with free electron concentration, the consequence of a strongly non‐parabolic conduction band caused by the k · p interaction with the valence bands across the narrow bandgap. The bandgap gradually increases with increasing Ga or Al content in In1−xGaxN or In1−yAlyN alloys. The composition dependencies of the bandgaps are well described by bowing parameters of 1.4 eV for In1−xGaxN and 3.0 eV for In1−yAlyN. The direct gaps of the group III‐nitride alloy system cover a very broad spectral range from the near‐infrared in InN to deep‐ultraviolet in AlN. This offers unique opportunities for the use of these alloys in a wide range of optoelectronic and photovoltaic devices. (© 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200303475</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2003-11, Vol.240 (2), p.412-416
issn 0370-1972
1610-1634
1521-3951
language eng
recordid cdi_proquest_miscellaneous_27897873
source Wiley Online Library Journals Frontfile Complete
subjects 72.80.Ey
78.30.−j
78.66.Fd
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Iii-v semiconductors
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of specific thin films
Photoluminescence
Physics
title Narrow bandgap group III-nitride alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Narrow%20bandgap%20group%20III-nitride%20alloys&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Wu,%20J.&rft.date=2003-11&rft.volume=240&rft.issue=2&rft.spage=412&rft.epage=416&rft.pages=412-416&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200303475&rft_dat=%3Cproquest_cross%3E27885230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27885230&rft_id=info:pmid/&rfr_iscdi=true