Geometry of Submerged Funicular Arches in Cartesian Coordinates

The derivation of funicular shapes for submerged arches has been the subject of a number of studies. In a recent paper, the solution governing the shape of the arch was derived in a coordinate system involving the arc length s and tangent angle of the arch. The solution in s-θ coordinates, however,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2003-08, Vol.129 (8), p.1087-1092
Hauptverfasser: Chai, Y. H, Kunnath, S. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1092
container_issue 8
container_start_page 1087
container_title Journal of structural engineering (New York, N.Y.)
container_volume 129
creator Chai, Y. H
Kunnath, S. K
description The derivation of funicular shapes for submerged arches has been the subject of a number of studies. In a recent paper, the solution governing the shape of the arch was derived in a coordinate system involving the arc length s and tangent angle of the arch. The solution in s-θ coordinates, however, is not convenient for defining the actual shape of the funicular arch. In this paper, the solution for submerged funicular arches is extended to Cartesian coordinates since the resulting geometric expressions can be more readily used in engineering construction. It will be shown that the submerged funicular arch in Cartesian coordinates involves a combination of elliptic integrals of the first and second kind. An important finding that results from the present formulation is the existence of a minimum compressive force, below which the shape of the funicular arch cannot be determined. Other parameters that are of interest in design are also discussed. The proposed solution for the submerged funicular arch is applied to a design example to illustrate the procedure and effectiveness of the approach.
doi_str_mv 10.1061/(ASCE)0733-9445(2003)129:8(1087)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27896544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27896544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-ad488ef34a90fb3b23a2ab762e065b84fd200b28d93def2d92a658b7466e08de3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwHzKhdgj4K4nDUlWhH6AKhoIEk-XEL5AqicFOhv57HAqseHn3SUfX9kFoQvAVwTG5nsy32WKKE8bClPNoQjFmU0LTG-ERkUyP0IiknIURJy_HaPQHnqIz53YY4yQiYoRmKzANdHYfmDLY9nkD9g10sOzbquhrZYO5Ld7BBVUbZMp24CrlkzFWV63y6zk6KVXt4OJnjtHzcvGUrcPN4-oum29CxUTUhUpzIaBkXKW4zFlOmaIqT2IKOI5ywUvt359ToVOmoaQ6pSqORJ7wOAYsNLAxujz0fljz2YPrZFO5AupatWB6J2ki0jji3IOzA1hY45yFUn7YqlF2LwmWgzkpB3NyECIHIXIwJ705KeRgzje8HhqUv0DuTG9b_zN5v1083K69OI_i4QgfPf-dyW_5P91fmu16lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27896544</pqid></control><display><type>article</type><title>Geometry of Submerged Funicular Arches in Cartesian Coordinates</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Chai, Y. H ; Kunnath, S. K</creator><creatorcontrib>Chai, Y. H ; Kunnath, S. K</creatorcontrib><description>The derivation of funicular shapes for submerged arches has been the subject of a number of studies. In a recent paper, the solution governing the shape of the arch was derived in a coordinate system involving the arc length s and tangent angle of the arch. The solution in s-θ coordinates, however, is not convenient for defining the actual shape of the funicular arch. In this paper, the solution for submerged funicular arches is extended to Cartesian coordinates since the resulting geometric expressions can be more readily used in engineering construction. It will be shown that the submerged funicular arch in Cartesian coordinates involves a combination of elliptic integrals of the first and second kind. An important finding that results from the present formulation is the existence of a minimum compressive force, below which the shape of the funicular arch cannot be determined. Other parameters that are of interest in design are also discussed. The proposed solution for the submerged funicular arch is applied to a design example to illustrate the procedure and effectiveness of the approach.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)0733-9445(2003)129:8(1087)</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>TECHNICAL PAPERS</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2003-08, Vol.129 (8), p.1087-1092</ispartof><rights>Copyright © 2003 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-ad488ef34a90fb3b23a2ab762e065b84fd200b28d93def2d92a658b7466e08de3</citedby><cites>FETCH-LOGICAL-a385t-ad488ef34a90fb3b23a2ab762e065b84fd200b28d93def2d92a658b7466e08de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9445(2003)129:8(1087)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9445(2003)129:8(1087)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75964,75972</link.rule.ids></links><search><creatorcontrib>Chai, Y. H</creatorcontrib><creatorcontrib>Kunnath, S. K</creatorcontrib><title>Geometry of Submerged Funicular Arches in Cartesian Coordinates</title><title>Journal of structural engineering (New York, N.Y.)</title><description>The derivation of funicular shapes for submerged arches has been the subject of a number of studies. In a recent paper, the solution governing the shape of the arch was derived in a coordinate system involving the arc length s and tangent angle of the arch. The solution in s-θ coordinates, however, is not convenient for defining the actual shape of the funicular arch. In this paper, the solution for submerged funicular arches is extended to Cartesian coordinates since the resulting geometric expressions can be more readily used in engineering construction. It will be shown that the submerged funicular arch in Cartesian coordinates involves a combination of elliptic integrals of the first and second kind. An important finding that results from the present formulation is the existence of a minimum compressive force, below which the shape of the funicular arch cannot be determined. Other parameters that are of interest in design are also discussed. The proposed solution for the submerged funicular arch is applied to a design example to illustrate the procedure and effectiveness of the approach.</description><subject>TECHNICAL PAPERS</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwHzKhdgj4K4nDUlWhH6AKhoIEk-XEL5AqicFOhv57HAqseHn3SUfX9kFoQvAVwTG5nsy32WKKE8bClPNoQjFmU0LTG-ERkUyP0IiknIURJy_HaPQHnqIz53YY4yQiYoRmKzANdHYfmDLY9nkD9g10sOzbquhrZYO5Ld7BBVUbZMp24CrlkzFWV63y6zk6KVXt4OJnjtHzcvGUrcPN4-oum29CxUTUhUpzIaBkXKW4zFlOmaIqT2IKOI5ywUvt359ToVOmoaQ6pSqORJ7wOAYsNLAxujz0fljz2YPrZFO5AupatWB6J2ki0jji3IOzA1hY45yFUn7YqlF2LwmWgzkpB3NyECIHIXIwJ705KeRgzje8HhqUv0DuTG9b_zN5v1083K69OI_i4QgfPf-dyW_5P91fmu16lg</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Chai, Y. H</creator><creator>Kunnath, S. K</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200308</creationdate><title>Geometry of Submerged Funicular Arches in Cartesian Coordinates</title><author>Chai, Y. H ; Kunnath, S. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-ad488ef34a90fb3b23a2ab762e065b84fd200b28d93def2d92a658b7466e08de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Y. H</creatorcontrib><creatorcontrib>Kunnath, S. K</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Y. H</au><au>Kunnath, S. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of Submerged Funicular Arches in Cartesian Coordinates</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2003-08</date><risdate>2003</risdate><volume>129</volume><issue>8</issue><spage>1087</spage><epage>1092</epage><pages>1087-1092</pages><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>The derivation of funicular shapes for submerged arches has been the subject of a number of studies. In a recent paper, the solution governing the shape of the arch was derived in a coordinate system involving the arc length s and tangent angle of the arch. The solution in s-θ coordinates, however, is not convenient for defining the actual shape of the funicular arch. In this paper, the solution for submerged funicular arches is extended to Cartesian coordinates since the resulting geometric expressions can be more readily used in engineering construction. It will be shown that the submerged funicular arch in Cartesian coordinates involves a combination of elliptic integrals of the first and second kind. An important finding that results from the present formulation is the existence of a minimum compressive force, below which the shape of the funicular arch cannot be determined. Other parameters that are of interest in design are also discussed. The proposed solution for the submerged funicular arch is applied to a design example to illustrate the procedure and effectiveness of the approach.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9445(2003)129:8(1087)</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2003-08, Vol.129 (8), p.1087-1092
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_miscellaneous_27896544
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects TECHNICAL PAPERS
title Geometry of Submerged Funicular Arches in Cartesian Coordinates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20Submerged%20Funicular%20Arches%20in%20Cartesian%20Coordinates&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Chai,%20Y.%20H&rft.date=2003-08&rft.volume=129&rft.issue=8&rft.spage=1087&rft.epage=1092&rft.pages=1087-1092&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)0733-9445(2003)129:8(1087)&rft_dat=%3Cproquest_cross%3E27896544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27896544&rft_id=info:pmid/&rfr_iscdi=true