Feature Weighting in k-Means Clustering
Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable...
Gespeichert in:
Veröffentlicht in: | Machine learning 2003-09, Vol.52 (3), p.217-237 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 3 |
container_start_page | 217 |
container_title | Machine learning |
container_volume | 52 |
creator | Modha, Dharmendra S Spangler, W Scott |
description | Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on different feature spaces, in a convex fashion, by assigning (possibly) different relative weights to each, (iv) for a fixed weighting, to cluster using the proposed convex k-means algorithm, and (v) to determine the optimal feature weighting to be the one that yields the clustering that simultaneously minimizes the average within-cluster dispersion and maximizes the average between-cluster dispersion along all the feature spaces. Using precision/recall evaluations and known ground truth classifications, we empirically demonstrate the effectiveness of feature weighting in clustering on several different application domains.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1024016609528 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27894880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27894880</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-50f4308f75dca89b269132dabfad6e8d9ee4c6c5dfb7cd936f792413d8ebdf253</originalsourceid><addsrcrecordid>eNpdjsFKxDAURYMoWEfXbosLXUVfkiZ5cTcMMyqMuFFclrR5GTvWdmza_7egK1cHLofDZexSwK0Aqe6W9zMKEMaA0xKPWCa0VRy00ccsA0TNjZD6lJ2ltAcAadBk7GZDfpwGyt-p2X2MTbfLmy7_5M_ku5Sv2imNNMzrOTuJvk108ccFe9usX1ePfPvy8LRabvlBCjFyDbFQgNHqUHt0lTROKBl8FX0whMERFbWpdYiVrYNTJlonC6ECUhWi1GrBrn-7h6H_niiN5VeTampb31E_pVJadAUizOLVP3HfT0M3fyuttqBAKKd-APz-T2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757030139</pqid></control><display><type>article</type><title>Feature Weighting in k-Means Clustering</title><source>SpringerLink (Online service)</source><creator>Modha, Dharmendra S ; Spangler, W Scott</creator><creatorcontrib>Modha, Dharmendra S ; Spangler, W Scott</creatorcontrib><description>Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on different feature spaces, in a convex fashion, by assigning (possibly) different relative weights to each, (iv) for a fixed weighting, to cluster using the proposed convex k-means algorithm, and (v) to determine the optimal feature weighting to be the one that yields the clustering that simultaneously minimizes the average within-cluster dispersion and maximizes the average between-cluster dispersion along all the feature spaces. Using precision/recall evaluations and known ground truth classifications, we empirically demonstrate the effectiveness of feature weighting in clustering on several different application domains.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1023/A:1024016609528</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Studies</subject><ispartof>Machine learning, 2003-09, Vol.52 (3), p.217-237</ispartof><rights>Kluwer Academic Publishers 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Modha, Dharmendra S</creatorcontrib><creatorcontrib>Spangler, W Scott</creatorcontrib><title>Feature Weighting in k-Means Clustering</title><title>Machine learning</title><description>Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on different feature spaces, in a convex fashion, by assigning (possibly) different relative weights to each, (iv) for a fixed weighting, to cluster using the proposed convex k-means algorithm, and (v) to determine the optimal feature weighting to be the one that yields the clustering that simultaneously minimizes the average within-cluster dispersion and maximizes the average between-cluster dispersion along all the feature spaces. Using precision/recall evaluations and known ground truth classifications, we empirically demonstrate the effectiveness of feature weighting in clustering on several different application domains.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Studies</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjsFKxDAURYMoWEfXbosLXUVfkiZ5cTcMMyqMuFFclrR5GTvWdmza_7egK1cHLofDZexSwK0Aqe6W9zMKEMaA0xKPWCa0VRy00ccsA0TNjZD6lJ2ltAcAadBk7GZDfpwGyt-p2X2MTbfLmy7_5M_ku5Sv2imNNMzrOTuJvk108ccFe9usX1ePfPvy8LRabvlBCjFyDbFQgNHqUHt0lTROKBl8FX0whMERFbWpdYiVrYNTJlonC6ECUhWi1GrBrn-7h6H_niiN5VeTampb31E_pVJadAUizOLVP3HfT0M3fyuttqBAKKd-APz-T2s</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Modha, Dharmendra S</creator><creator>Spangler, W Scott</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20030901</creationdate><title>Feature Weighting in k-Means Clustering</title><author>Modha, Dharmendra S ; Spangler, W Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-50f4308f75dca89b269132dabfad6e8d9ee4c6c5dfb7cd936f792413d8ebdf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Modha, Dharmendra S</creatorcontrib><creatorcontrib>Spangler, W Scott</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Modha, Dharmendra S</au><au>Spangler, W Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Weighting in k-Means Clustering</atitle><jtitle>Machine learning</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>52</volume><issue>3</issue><spage>217</spage><epage>237</epage><pages>217-237</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on different feature spaces, in a convex fashion, by assigning (possibly) different relative weights to each, (iv) for a fixed weighting, to cluster using the proposed convex k-means algorithm, and (v) to determine the optimal feature weighting to be the one that yields the clustering that simultaneously minimizes the average within-cluster dispersion and maximizes the average between-cluster dispersion along all the feature spaces. Using precision/recall evaluations and known ground truth classifications, we empirically demonstrate the effectiveness of feature weighting in clustering on several different application domains.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1024016609528</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2003-09, Vol.52 (3), p.217-237 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_miscellaneous_27894880 |
source | SpringerLink (Online service) |
subjects | Algorithms Studies |
title | Feature Weighting in k-Means Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Weighting%20in%20k-Means%20Clustering&rft.jtitle=Machine%20learning&rft.au=Modha,%20Dharmendra%20S&rft.date=2003-09-01&rft.volume=52&rft.issue=3&rft.spage=217&rft.epage=237&rft.pages=217-237&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1023/A:1024016609528&rft_dat=%3Cproquest%3E27894880%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757030139&rft_id=info:pmid/&rfr_iscdi=true |