On Saint-Venant’s principle in the dynamics of elastic beams

In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2003-06, Vol.40 (13), p.3293-3310
Hauptverfasser: Berdichevsky, V., Foster, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3310
container_issue 13
container_start_page 3293
container_title International journal of solids and structures
container_volume 40
creator Berdichevsky, V.
Foster, D.J.
description In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].
doi_str_mv 10.1016/S0020-7683(03)00158-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27893369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768303001586</els_id><sourcerecordid>27893369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-gtCNoovqTZOm6UaRwT8YmMWo25BJbzDSpmPSEWbna_h6PomtI7oULtzNOffc8xFySOGMAhXnc4AM0kJIdgLsFIDmMhVbZERlUaYZ5WKbjH4lu2QvxhcA4KyEEbmY-WSune_SJ_Tad5_vHzFZBueNW9aYOJ90z5hUa68bZ2LS2gRrHTtnkgXqJu6THavriAc_e0web64fJnfpdHZ7P7mapoYJ2aW6yDhluciYYTZnABZ1WRbAK6BFVQmW8zwrNC85WrOoclkJLZmVbGFziVyyMTne3F2G9nWFsVONiwbrWntsV1FlhSwZE2UvzDdCE9oYA1rVl2l0WCsKaqClvmmpAYWCfgZaSvS-o58AHY2ubdA9gfhn5lIyyIZHLjc67Nu-OQwqGofeYOUCmk5Vrfsn6Qt28n21</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27893369</pqid></control><display><type>article</type><title>On Saint-Venant’s principle in the dynamics of elastic beams</title><source>Access via ScienceDirect (Elsevier)</source><creator>Berdichevsky, V. ; Foster, D.J.</creator><creatorcontrib>Berdichevsky, V. ; Foster, D.J.</creatorcontrib><description>In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(03)00158-6</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal of solids and structures, 2003-06, Vol.40 (13), p.3293-3310</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</citedby><cites>FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(03)00158-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14883028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berdichevsky, V.</creatorcontrib><creatorcontrib>Foster, D.J.</creatorcontrib><title>On Saint-Venant’s principle in the dynamics of elastic beams</title><title>International journal of solids and structures</title><description>In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-gtCNoovqTZOm6UaRwT8YmMWo25BJbzDSpmPSEWbna_h6PomtI7oULtzNOffc8xFySOGMAhXnc4AM0kJIdgLsFIDmMhVbZERlUaYZ5WKbjH4lu2QvxhcA4KyEEbmY-WSune_SJ_Tad5_vHzFZBueNW9aYOJ90z5hUa68bZ2LS2gRrHTtnkgXqJu6THavriAc_e0web64fJnfpdHZ7P7mapoYJ2aW6yDhluciYYTZnABZ1WRbAK6BFVQmW8zwrNC85WrOoclkJLZmVbGFziVyyMTne3F2G9nWFsVONiwbrWntsV1FlhSwZE2UvzDdCE9oYA1rVl2l0WCsKaqClvmmpAYWCfgZaSvS-o58AHY2ubdA9gfhn5lIyyIZHLjc67Nu-OQwqGofeYOUCmk5Vrfsn6Qt28n21</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Berdichevsky, V.</creator><creator>Foster, D.J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030601</creationdate><title>On Saint-Venant’s principle in the dynamics of elastic beams</title><author>Berdichevsky, V. ; Foster, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdichevsky, V.</creatorcontrib><creatorcontrib>Foster, D.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdichevsky, V.</au><au>Foster, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Saint-Venant’s principle in the dynamics of elastic beams</atitle><jtitle>International journal of solids and structures</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>40</volume><issue>13</issue><spage>3293</spage><epage>3310</epage><pages>3293-3310</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(03)00158-6</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2003-06, Vol.40 (13), p.3293-3310
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_27893369
source Access via ScienceDirect (Elsevier)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title On Saint-Venant’s principle in the dynamics of elastic beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Saint-Venant%E2%80%99s%20principle%20in%20the%20dynamics%20of%20elastic%20beams&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Berdichevsky,%20V.&rft.date=2003-06-01&rft.volume=40&rft.issue=13&rft.spage=3293&rft.epage=3310&rft.pages=3293-3310&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(03)00158-6&rft_dat=%3Cproquest_cross%3E27893369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27893369&rft_id=info:pmid/&rft_els_id=S0020768303001586&rfr_iscdi=true