On Saint-Venant’s principle in the dynamics of elastic beams
In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc....
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2003-06, Vol.40 (13), p.3293-3310 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3310 |
---|---|
container_issue | 13 |
container_start_page | 3293 |
container_title | International journal of solids and structures |
container_volume | 40 |
creator | Berdichevsky, V. Foster, D.J. |
description | In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140]. |
doi_str_mv | 10.1016/S0020-7683(03)00158-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27893369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768303001586</els_id><sourcerecordid>27893369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-gtCNoovqTZOm6UaRwT8YmMWo25BJbzDSpmPSEWbna_h6PomtI7oULtzNOffc8xFySOGMAhXnc4AM0kJIdgLsFIDmMhVbZERlUaYZ5WKbjH4lu2QvxhcA4KyEEbmY-WSune_SJ_Tad5_vHzFZBueNW9aYOJ90z5hUa68bZ2LS2gRrHTtnkgXqJu6THavriAc_e0web64fJnfpdHZ7P7mapoYJ2aW6yDhluciYYTZnABZ1WRbAK6BFVQmW8zwrNC85WrOoclkJLZmVbGFziVyyMTne3F2G9nWFsVONiwbrWntsV1FlhSwZE2UvzDdCE9oYA1rVl2l0WCsKaqClvmmpAYWCfgZaSvS-o58AHY2ubdA9gfhn5lIyyIZHLjc67Nu-OQwqGofeYOUCmk5Vrfsn6Qt28n21</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27893369</pqid></control><display><type>article</type><title>On Saint-Venant’s principle in the dynamics of elastic beams</title><source>Access via ScienceDirect (Elsevier)</source><creator>Berdichevsky, V. ; Foster, D.J.</creator><creatorcontrib>Berdichevsky, V. ; Foster, D.J.</creatorcontrib><description>In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(03)00158-6</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal of solids and structures, 2003-06, Vol.40 (13), p.3293-3310</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</citedby><cites>FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(03)00158-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14883028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berdichevsky, V.</creatorcontrib><creatorcontrib>Foster, D.J.</creatorcontrib><title>On Saint-Venant’s principle in the dynamics of elastic beams</title><title>International journal of solids and structures</title><description>In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-gtCNoovqTZOm6UaRwT8YmMWo25BJbzDSpmPSEWbna_h6PomtI7oULtzNOffc8xFySOGMAhXnc4AM0kJIdgLsFIDmMhVbZERlUaYZ5WKbjH4lu2QvxhcA4KyEEbmY-WSune_SJ_Tad5_vHzFZBueNW9aYOJ90z5hUa68bZ2LS2gRrHTtnkgXqJu6THavriAc_e0web64fJnfpdHZ7P7mapoYJ2aW6yDhluciYYTZnABZ1WRbAK6BFVQmW8zwrNC85WrOoclkJLZmVbGFziVyyMTne3F2G9nWFsVONiwbrWntsV1FlhSwZE2UvzDdCE9oYA1rVl2l0WCsKaqClvmmpAYWCfgZaSvS-o58AHY2ubdA9gfhn5lIyyIZHLjc67Nu-OQwqGofeYOUCmk5Vrfsn6Qt28n21</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Berdichevsky, V.</creator><creator>Foster, D.J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030601</creationdate><title>On Saint-Venant’s principle in the dynamics of elastic beams</title><author>Berdichevsky, V. ; Foster, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a724135623c3f5300fea99704d017dd6354527a494efcbd58d6a83f83bf58e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berdichevsky, V.</creatorcontrib><creatorcontrib>Foster, D.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berdichevsky, V.</au><au>Foster, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Saint-Venant’s principle in the dynamics of elastic beams</atitle><jtitle>International journal of solids and structures</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>40</volume><issue>13</issue><spage>3293</spage><epage>3310</epage><pages>3293-3310</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>In dynamics, Saint-Venant’s principle of exponential decay of stress resulting from a self-equilibrating load is not valid. For a beam type structure, a self-equilibrated load may penetrate well inside the beam. Although this effect has been known for a long time, at least since Lamb’s paper [Proc. Roy. Soc. Lon. Ser. A 93 (1916) 114], it was not clear how to characterize it quantitatively. In this paper we propose a “probabilistic approach” to evaluate the magnitude of the penetrating stress state. The key point is that, in engineering problems, the distribution of the self-equilibrated load is usually not known. By assigning to the self-equilibrated load some probabilistic measure one can find probabilistic characteristics of the penetrating stress state. We develop this reasoning for the simplest case: longitudinal vibrations of a two-dimensional semi-infinite, elastic isotropic homogeneous strip, excited by a periodic load at the end. We show the frequency range where Saint-Venant’s principle can be used with good accuracy, and thus, one-dimensional classical beam theory still can be applied. We characterize also the increase in this range which is achieved in the refined plate theory proposed by Berdichevsky and Le [J. Appl. Math. Mech. (PMM) 42 (1) (1978) 140].</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(03)00158-6</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2003-06, Vol.40 (13), p.3293-3310 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_27893369 |
source | Access via ScienceDirect (Elsevier) |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | On Saint-Venant’s principle in the dynamics of elastic beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Saint-Venant%E2%80%99s%20principle%20in%20the%20dynamics%20of%20elastic%20beams&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Berdichevsky,%20V.&rft.date=2003-06-01&rft.volume=40&rft.issue=13&rft.spage=3293&rft.epage=3310&rft.pages=3293-3310&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(03)00158-6&rft_dat=%3Cproquest_cross%3E27893369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27893369&rft_id=info:pmid/&rft_els_id=S0020768303001586&rfr_iscdi=true |