Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces
Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensi...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-05, Vol.18 (5), p.521-528 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 5 |
container_start_page | 521 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Toyama, Satoko Seki, Takehito Kanitani, Yuya Kudo, Yoshihiro Tomiya, Shigetaka Ikuhara, Yuichi Shibata, Naoya |
description | Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al
0.81
In
0.19
N interface and pseudomorphic GaN/Al
0.88
In
0.12
N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.
Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface. |
doi_str_mv | 10.1038/s41565-023-01349-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2789233751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789233751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</originalsourceid><addsrcrecordid>eNp9kEtr3TAQRkVpaZ5_oIti6KYbtRq9PF6W0EcgEAjJJhuhK40TB9u6leyW_PsovUkKXXSjEZozn5jD2DsQn0Ao_Fw0GGu4kIoLULrj-IrtQ6uRK9WZ1y93bPfYQSl3QhjZSf2W7SnbaVBW7rPrC_IjL1sfqEmbQvmXX4Y0N6lvfLP8TjwOE82lPvmxoZHCkmv3xpfGL02haQhpjmtYUm5uaaGchrmefY0rR-xN78dCx0_1kF19-3p58oOfnX8_PflyxoPWsHC_CdJ2USJKiAhgqQ86EgpvwbQ2ihAERuXRSKu0lwiIrfLBamuihE4dso-73G1OP1cqi5uGEmgc_UxpLU622EmlWgMV_fAPepfWXFerFIJBC9qISskdFXIqJVPvtnmYfL53INyjebcz76p598e8wzr0_il63UwUX0aeVVdA7YBSW_MN5b9__yf2ARfPjhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815861450</pqid></control><display><type>article</type><title>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Toyama, Satoko ; Seki, Takehito ; Kanitani, Yuya ; Kudo, Yoshihiro ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</creator><creatorcontrib>Toyama, Satoko ; Seki, Takehito ; Kanitani, Yuya ; Kudo, Yoshihiro ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</creatorcontrib><description>Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al
0.81
In
0.19
N interface and pseudomorphic GaN/Al
0.88
In
0.12
N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.
Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01349-8</identifier><identifier>PMID: 36941362</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005/1007 ; 639/301/357/995 ; 639/301/930/328/2082 ; 639/925/927/1007 ; Carrier density ; Chemistry and Materials Science ; Current carriers ; Diffraction ; Electric fields ; Electron gas ; Gallium nitrides ; Lattice matching ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Phase contrast ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Semiconductor devices ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2023-05, Vol.18 (5), p.521-528</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</citedby><cites>FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</cites><orcidid>0000-0002-8128-3094 ; 0000-0003-3886-005X ; 0000-0003-3548-5952 ; 0000-0001-5437-6351 ; 0000-0003-0377-9331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01349-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01349-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36941362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toyama, Satoko</creatorcontrib><creatorcontrib>Seki, Takehito</creatorcontrib><creatorcontrib>Kanitani, Yuya</creatorcontrib><creatorcontrib>Kudo, Yoshihiro</creatorcontrib><creatorcontrib>Tomiya, Shigetaka</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><title>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al
0.81
In
0.19
N interface and pseudomorphic GaN/Al
0.88
In
0.12
N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.
Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.</description><subject>639/166/987</subject><subject>639/301/1005/1007</subject><subject>639/301/357/995</subject><subject>639/301/930/328/2082</subject><subject>639/925/927/1007</subject><subject>Carrier density</subject><subject>Chemistry and Materials Science</subject><subject>Current carriers</subject><subject>Diffraction</subject><subject>Electric fields</subject><subject>Electron gas</subject><subject>Gallium nitrides</subject><subject>Lattice matching</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Phase contrast</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Semiconductor devices</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtr3TAQRkVpaZ5_oIti6KYbtRq9PF6W0EcgEAjJJhuhK40TB9u6leyW_PsovUkKXXSjEZozn5jD2DsQn0Ao_Fw0GGu4kIoLULrj-IrtQ6uRK9WZ1y93bPfYQSl3QhjZSf2W7SnbaVBW7rPrC_IjL1sfqEmbQvmXX4Y0N6lvfLP8TjwOE82lPvmxoZHCkmv3xpfGL02haQhpjmtYUm5uaaGchrmefY0rR-xN78dCx0_1kF19-3p58oOfnX8_PflyxoPWsHC_CdJ2USJKiAhgqQ86EgpvwbQ2ihAERuXRSKu0lwiIrfLBamuihE4dso-73G1OP1cqi5uGEmgc_UxpLU622EmlWgMV_fAPepfWXFerFIJBC9qISskdFXIqJVPvtnmYfL53INyjebcz76p598e8wzr0_il63UwUX0aeVVdA7YBSW_MN5b9__yf2ARfPjhw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Toyama, Satoko</creator><creator>Seki, Takehito</creator><creator>Kanitani, Yuya</creator><creator>Kudo, Yoshihiro</creator><creator>Tomiya, Shigetaka</creator><creator>Ikuhara, Yuichi</creator><creator>Shibata, Naoya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8128-3094</orcidid><orcidid>https://orcid.org/0000-0003-3886-005X</orcidid><orcidid>https://orcid.org/0000-0003-3548-5952</orcidid><orcidid>https://orcid.org/0000-0001-5437-6351</orcidid><orcidid>https://orcid.org/0000-0003-0377-9331</orcidid></search><sort><creationdate>20230501</creationdate><title>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</title><author>Toyama, Satoko ; Seki, Takehito ; Kanitani, Yuya ; Kudo, Yoshihiro ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/301/1005/1007</topic><topic>639/301/357/995</topic><topic>639/301/930/328/2082</topic><topic>639/925/927/1007</topic><topic>Carrier density</topic><topic>Chemistry and Materials Science</topic><topic>Current carriers</topic><topic>Diffraction</topic><topic>Electric fields</topic><topic>Electron gas</topic><topic>Gallium nitrides</topic><topic>Lattice matching</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Phase contrast</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Semiconductor devices</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toyama, Satoko</creatorcontrib><creatorcontrib>Seki, Takehito</creatorcontrib><creatorcontrib>Kanitani, Yuya</creatorcontrib><creatorcontrib>Kudo, Yoshihiro</creatorcontrib><creatorcontrib>Tomiya, Shigetaka</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toyama, Satoko</au><au>Seki, Takehito</au><au>Kanitani, Yuya</au><au>Kudo, Yoshihiro</au><au>Tomiya, Shigetaka</au><au>Ikuhara, Yuichi</au><au>Shibata, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>521</spage><epage>528</epage><pages>521-528</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al
0.81
In
0.19
N interface and pseudomorphic GaN/Al
0.88
In
0.12
N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.
Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36941362</pmid><doi>10.1038/s41565-023-01349-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8128-3094</orcidid><orcidid>https://orcid.org/0000-0003-3886-005X</orcidid><orcidid>https://orcid.org/0000-0003-3548-5952</orcidid><orcidid>https://orcid.org/0000-0001-5437-6351</orcidid><orcidid>https://orcid.org/0000-0003-0377-9331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-05, Vol.18 (5), p.521-528 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2789233751 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/166/987 639/301/1005/1007 639/301/357/995 639/301/930/328/2082 639/925/927/1007 Carrier density Chemistry and Materials Science Current carriers Diffraction Electric fields Electron gas Gallium nitrides Lattice matching Materials Science Nanotechnology Nanotechnology and Microengineering Phase contrast Scanning electron microscopy Scanning transmission electron microscopy Semiconductor devices Transmission electron microscopy |
title | Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-space%20observation%20of%20a%20two-dimensional%20electron%20gas%20at%20semiconductor%20heterointerfaces&rft.jtitle=Nature%20nanotechnology&rft.au=Toyama,%20Satoko&rft.date=2023-05-01&rft.volume=18&rft.issue=5&rft.spage=521&rft.epage=528&rft.pages=521-528&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01349-8&rft_dat=%3Cproquest_cross%3E2789233751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815861450&rft_id=info:pmid/36941362&rfr_iscdi=true |