Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces

Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2023-05, Vol.18 (5), p.521-528
Hauptverfasser: Toyama, Satoko, Seki, Takehito, Kanitani, Yuya, Kudo, Yoshihiro, Tomiya, Shigetaka, Ikuhara, Yuichi, Shibata, Naoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 5
container_start_page 521
container_title Nature nanotechnology
container_volume 18
creator Toyama, Satoko
Seki, Takehito
Kanitani, Yuya
Kudo, Yoshihiro
Tomiya, Shigetaka
Ikuhara, Yuichi
Shibata, Naoya
description Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al 0.81 In 0.19 N interface and pseudomorphic GaN/Al 0.88 In 0.12 N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices. Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.
doi_str_mv 10.1038/s41565-023-01349-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2789233751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789233751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</originalsourceid><addsrcrecordid>eNp9kEtr3TAQRkVpaZ5_oIti6KYbtRq9PF6W0EcgEAjJJhuhK40TB9u6leyW_PsovUkKXXSjEZozn5jD2DsQn0Ao_Fw0GGu4kIoLULrj-IrtQ6uRK9WZ1y93bPfYQSl3QhjZSf2W7SnbaVBW7rPrC_IjL1sfqEmbQvmXX4Y0N6lvfLP8TjwOE82lPvmxoZHCkmv3xpfGL02haQhpjmtYUm5uaaGchrmefY0rR-xN78dCx0_1kF19-3p58oOfnX8_PflyxoPWsHC_CdJ2USJKiAhgqQ86EgpvwbQ2ihAERuXRSKu0lwiIrfLBamuihE4dso-73G1OP1cqi5uGEmgc_UxpLU622EmlWgMV_fAPepfWXFerFIJBC9qISskdFXIqJVPvtnmYfL53INyjebcz76p598e8wzr0_il63UwUX0aeVVdA7YBSW_MN5b9__yf2ARfPjhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815861450</pqid></control><display><type>article</type><title>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Toyama, Satoko ; Seki, Takehito ; Kanitani, Yuya ; Kudo, Yoshihiro ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</creator><creatorcontrib>Toyama, Satoko ; Seki, Takehito ; Kanitani, Yuya ; Kudo, Yoshihiro ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</creatorcontrib><description>Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al 0.81 In 0.19 N interface and pseudomorphic GaN/Al 0.88 In 0.12 N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices. Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01349-8</identifier><identifier>PMID: 36941362</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005/1007 ; 639/301/357/995 ; 639/301/930/328/2082 ; 639/925/927/1007 ; Carrier density ; Chemistry and Materials Science ; Current carriers ; Diffraction ; Electric fields ; Electron gas ; Gallium nitrides ; Lattice matching ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Phase contrast ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Semiconductor devices ; Transmission electron microscopy</subject><ispartof>Nature nanotechnology, 2023-05, Vol.18 (5), p.521-528</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</citedby><cites>FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</cites><orcidid>0000-0002-8128-3094 ; 0000-0003-3886-005X ; 0000-0003-3548-5952 ; 0000-0001-5437-6351 ; 0000-0003-0377-9331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01349-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01349-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36941362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toyama, Satoko</creatorcontrib><creatorcontrib>Seki, Takehito</creatorcontrib><creatorcontrib>Kanitani, Yuya</creatorcontrib><creatorcontrib>Kudo, Yoshihiro</creatorcontrib><creatorcontrib>Tomiya, Shigetaka</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><title>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al 0.81 In 0.19 N interface and pseudomorphic GaN/Al 0.88 In 0.12 N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices. Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.</description><subject>639/166/987</subject><subject>639/301/1005/1007</subject><subject>639/301/357/995</subject><subject>639/301/930/328/2082</subject><subject>639/925/927/1007</subject><subject>Carrier density</subject><subject>Chemistry and Materials Science</subject><subject>Current carriers</subject><subject>Diffraction</subject><subject>Electric fields</subject><subject>Electron gas</subject><subject>Gallium nitrides</subject><subject>Lattice matching</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Phase contrast</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Semiconductor devices</subject><subject>Transmission electron microscopy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtr3TAQRkVpaZ5_oIti6KYbtRq9PF6W0EcgEAjJJhuhK40TB9u6leyW_PsovUkKXXSjEZozn5jD2DsQn0Ao_Fw0GGu4kIoLULrj-IrtQ6uRK9WZ1y93bPfYQSl3QhjZSf2W7SnbaVBW7rPrC_IjL1sfqEmbQvmXX4Y0N6lvfLP8TjwOE82lPvmxoZHCkmv3xpfGL02haQhpjmtYUm5uaaGchrmefY0rR-xN78dCx0_1kF19-3p58oOfnX8_PflyxoPWsHC_CdJ2USJKiAhgqQ86EgpvwbQ2ihAERuXRSKu0lwiIrfLBamuihE4dso-73G1OP1cqi5uGEmgc_UxpLU622EmlWgMV_fAPepfWXFerFIJBC9qISskdFXIqJVPvtnmYfL53INyjebcz76p598e8wzr0_il63UwUX0aeVVdA7YBSW_MN5b9__yf2ARfPjhw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Toyama, Satoko</creator><creator>Seki, Takehito</creator><creator>Kanitani, Yuya</creator><creator>Kudo, Yoshihiro</creator><creator>Tomiya, Shigetaka</creator><creator>Ikuhara, Yuichi</creator><creator>Shibata, Naoya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8128-3094</orcidid><orcidid>https://orcid.org/0000-0003-3886-005X</orcidid><orcidid>https://orcid.org/0000-0003-3548-5952</orcidid><orcidid>https://orcid.org/0000-0001-5437-6351</orcidid><orcidid>https://orcid.org/0000-0003-0377-9331</orcidid></search><sort><creationdate>20230501</creationdate><title>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</title><author>Toyama, Satoko ; Seki, Takehito ; Kanitani, Yuya ; Kudo, Yoshihiro ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-abc269d28821d8116efc4de80a61576d0cc08d3a852634a2818873ac6465d2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/301/1005/1007</topic><topic>639/301/357/995</topic><topic>639/301/930/328/2082</topic><topic>639/925/927/1007</topic><topic>Carrier density</topic><topic>Chemistry and Materials Science</topic><topic>Current carriers</topic><topic>Diffraction</topic><topic>Electric fields</topic><topic>Electron gas</topic><topic>Gallium nitrides</topic><topic>Lattice matching</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Phase contrast</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Semiconductor devices</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toyama, Satoko</creatorcontrib><creatorcontrib>Seki, Takehito</creatorcontrib><creatorcontrib>Kanitani, Yuya</creatorcontrib><creatorcontrib>Kudo, Yoshihiro</creatorcontrib><creatorcontrib>Tomiya, Shigetaka</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toyama, Satoko</au><au>Seki, Takehito</au><au>Kanitani, Yuya</au><au>Kudo, Yoshihiro</au><au>Tomiya, Shigetaka</au><au>Ikuhara, Yuichi</au><au>Shibata, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>521</spage><epage>528</epage><pages>521-528</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al 0.81 In 0.19 N interface and pseudomorphic GaN/Al 0.88 In 0.12 N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices. Differential phase contrast scanning transmission electron microscopy probes the electric field distribution across a GaN-based semiconductor heterointerface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36941362</pmid><doi>10.1038/s41565-023-01349-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8128-3094</orcidid><orcidid>https://orcid.org/0000-0003-3886-005X</orcidid><orcidid>https://orcid.org/0000-0003-3548-5952</orcidid><orcidid>https://orcid.org/0000-0001-5437-6351</orcidid><orcidid>https://orcid.org/0000-0003-0377-9331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2023-05, Vol.18 (5), p.521-528
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2789233751
source SpringerLink Journals; Nature Journals Online
subjects 639/166/987
639/301/1005/1007
639/301/357/995
639/301/930/328/2082
639/925/927/1007
Carrier density
Chemistry and Materials Science
Current carriers
Diffraction
Electric fields
Electron gas
Gallium nitrides
Lattice matching
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Phase contrast
Scanning electron microscopy
Scanning transmission electron microscopy
Semiconductor devices
Transmission electron microscopy
title Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-space%20observation%20of%20a%20two-dimensional%20electron%20gas%20at%20semiconductor%20heterointerfaces&rft.jtitle=Nature%20nanotechnology&rft.au=Toyama,%20Satoko&rft.date=2023-05-01&rft.volume=18&rft.issue=5&rft.spage=521&rft.epage=528&rft.pages=521-528&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01349-8&rft_dat=%3Cproquest_cross%3E2789233751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815861450&rft_id=info:pmid/36941362&rfr_iscdi=true