General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach

The general large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/nanowires is easily realized by a hydrothermal crystallization technique under mild conditions using cheap and simple inorganic salts as precursors. Uniform tungstate nanorods/nanowires such as MW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2003-08, Vol.13 (8), p.639-647
Hauptverfasser: Yu, S.-H., Liu, B., Mo, M.-S., Huang, J.-H., Liu, X.-M., Qian, Y.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 8
container_start_page 639
container_title Advanced functional materials
container_volume 13
creator Yu, S.-H.
Liu, B.
Mo, M.-S.
Huang, J.-H.
Liu, X.-M.
Qian, Y.-T.
description The general large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/nanowires is easily realized by a hydrothermal crystallization technique under mild conditions using cheap and simple inorganic salts as precursors. Uniform tungstate nanorods/nanowires such as MWO4 (M = Zn, Mn, Fe), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained by hydrothermal transformation and recrystallization of amorphous particulates. This novel and efficient pathway toward various kinds of related low‐dimensional tungstate nanocrystals under mild conditions could open new opportunities for further investigating the novel properties of tungstate materials. Large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/ nanowires by a mild hydrothermal crystallization technique using inorganic salts as precursors is reported. Uniform tungstate nanorods/nanowires, such as MWO4 (M = Zn, Mn, Fe (as shown in the Figure)), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained.
doi_str_mv 10.1002/adfm.200304373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27892330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27892330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4223-958abc9841e51c69326fe074401e8785fc8d30c219e2e64c4429cda1511879793</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEEuVjZfbERIq_EttsVaEFUcrQQtks417aQBIXO1Hpf0-qooqN6Z507_dO96LoguAuwZhem3lWdinGDHMm2EHUISlJY4apPNxr8nYcnYTwgTERgvFOVA6hAm8KNNlU9RJCHpDL0CSvFgXEfb8JdbubNtWiFTWgsamcd_NwvRXr3EO4QT00MDYv4AqN3DqeQrlqA-vGA5q4oqlzV6HeauWdscuz6CgzRYDz33kavQzupv37ePQ8fOj3RrHllLJYJdK8WyU5gYTYVDGaZoAF55iAFDLJrJwzbClRQCHllnOq7NyQhBAplFDsNLrc5bZnvxoItS7zYKEoTAWuCZoKqShjuDV2d0brXQgeMr3yeWn8RhOst63qbat632oLqB2wbj_e_OPWvdvB01823rF5qOF7zxr_qVPBRKJn46GeDR5n6e0r1ZL9AOhzivg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27892330</pqid></control><display><type>article</type><title>General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, S.-H. ; Liu, B. ; Mo, M.-S. ; Huang, J.-H. ; Liu, X.-M. ; Qian, Y.-T.</creator><creatorcontrib>Yu, S.-H. ; Liu, B. ; Mo, M.-S. ; Huang, J.-H. ; Liu, X.-M. ; Qian, Y.-T.</creatorcontrib><description>The general large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/nanowires is easily realized by a hydrothermal crystallization technique under mild conditions using cheap and simple inorganic salts as precursors. Uniform tungstate nanorods/nanowires such as MWO4 (M = Zn, Mn, Fe), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained by hydrothermal transformation and recrystallization of amorphous particulates. This novel and efficient pathway toward various kinds of related low‐dimensional tungstate nanocrystals under mild conditions could open new opportunities for further investigating the novel properties of tungstate materials. Large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/ nanowires by a mild hydrothermal crystallization technique using inorganic salts as precursors is reported. Uniform tungstate nanorods/nanowires, such as MWO4 (M = Zn, Mn, Fe (as shown in the Figure)), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200304373</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Nanorods ; Nanorods, tungstate ; Nanowires ; Nanowires, tungstate ; tungstate</subject><ispartof>Advanced functional materials, 2003-08, Vol.13 (8), p.639-647</ispartof><rights>Copyright © 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4223-958abc9841e51c69326fe074401e8785fc8d30c219e2e64c4429cda1511879793</citedby><cites>FETCH-LOGICAL-c4223-958abc9841e51c69326fe074401e8785fc8d30c219e2e64c4429cda1511879793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200304373$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45554</link.rule.ids></links><search><creatorcontrib>Yu, S.-H.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Mo, M.-S.</creatorcontrib><creatorcontrib>Huang, J.-H.</creatorcontrib><creatorcontrib>Liu, X.-M.</creatorcontrib><creatorcontrib>Qian, Y.-T.</creatorcontrib><title>General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The general large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/nanowires is easily realized by a hydrothermal crystallization technique under mild conditions using cheap and simple inorganic salts as precursors. Uniform tungstate nanorods/nanowires such as MWO4 (M = Zn, Mn, Fe), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained by hydrothermal transformation and recrystallization of amorphous particulates. This novel and efficient pathway toward various kinds of related low‐dimensional tungstate nanocrystals under mild conditions could open new opportunities for further investigating the novel properties of tungstate materials. Large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/ nanowires by a mild hydrothermal crystallization technique using inorganic salts as precursors is reported. Uniform tungstate nanorods/nanowires, such as MWO4 (M = Zn, Mn, Fe (as shown in the Figure)), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained.</description><subject>Nanorods</subject><subject>Nanorods, tungstate</subject><subject>Nanowires</subject><subject>Nanowires, tungstate</subject><subject>tungstate</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxSMEEuVjZfbERIq_EttsVaEFUcrQQtks417aQBIXO1Hpf0-qooqN6Z507_dO96LoguAuwZhem3lWdinGDHMm2EHUISlJY4apPNxr8nYcnYTwgTERgvFOVA6hAm8KNNlU9RJCHpDL0CSvFgXEfb8JdbubNtWiFTWgsamcd_NwvRXr3EO4QT00MDYv4AqN3DqeQrlqA-vGA5q4oqlzV6HeauWdscuz6CgzRYDz33kavQzupv37ePQ8fOj3RrHllLJYJdK8WyU5gYTYVDGaZoAF55iAFDLJrJwzbClRQCHllnOq7NyQhBAplFDsNLrc5bZnvxoItS7zYKEoTAWuCZoKqShjuDV2d0brXQgeMr3yeWn8RhOst63qbat632oLqB2wbj_e_OPWvdvB01823rF5qOF7zxr_qVPBRKJn46GeDR5n6e0r1ZL9AOhzivg</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Yu, S.-H.</creator><creator>Liu, B.</creator><creator>Mo, M.-S.</creator><creator>Huang, J.-H.</creator><creator>Liu, X.-M.</creator><creator>Qian, Y.-T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200308</creationdate><title>General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach</title><author>Yu, S.-H. ; Liu, B. ; Mo, M.-S. ; Huang, J.-H. ; Liu, X.-M. ; Qian, Y.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4223-958abc9841e51c69326fe074401e8785fc8d30c219e2e64c4429cda1511879793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Nanorods</topic><topic>Nanorods, tungstate</topic><topic>Nanowires</topic><topic>Nanowires, tungstate</topic><topic>tungstate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, S.-H.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Mo, M.-S.</creatorcontrib><creatorcontrib>Huang, J.-H.</creatorcontrib><creatorcontrib>Liu, X.-M.</creatorcontrib><creatorcontrib>Qian, Y.-T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, S.-H.</au><au>Liu, B.</au><au>Mo, M.-S.</au><au>Huang, J.-H.</au><au>Liu, X.-M.</au><au>Qian, Y.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2003-08</date><risdate>2003</risdate><volume>13</volume><issue>8</issue><spage>639</spage><epage>647</epage><pages>639-647</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The general large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/nanowires is easily realized by a hydrothermal crystallization technique under mild conditions using cheap and simple inorganic salts as precursors. Uniform tungstate nanorods/nanowires such as MWO4 (M = Zn, Mn, Fe), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained by hydrothermal transformation and recrystallization of amorphous particulates. This novel and efficient pathway toward various kinds of related low‐dimensional tungstate nanocrystals under mild conditions could open new opportunities for further investigating the novel properties of tungstate materials. Large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/ nanowires by a mild hydrothermal crystallization technique using inorganic salts as precursors is reported. Uniform tungstate nanorods/nanowires, such as MWO4 (M = Zn, Mn, Fe (as shown in the Figure)), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200304373</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2003-08, Vol.13 (8), p.639-647
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_27892330
source Wiley Online Library Journals Frontfile Complete
subjects Nanorods
Nanorods, tungstate
Nanowires
Nanowires, tungstate
tungstate
title General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Synthesis%20of%20Single-Crystal%20Tungstate%20Nanorods/Nanowires:%20A%20Facile,%20Low-Temperature%20Solution%20Approach&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20S.-H.&rft.date=2003-08&rft.volume=13&rft.issue=8&rft.spage=639&rft.epage=647&rft.pages=639-647&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200304373&rft_dat=%3Cproquest_cross%3E27892330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27892330&rft_id=info:pmid/&rfr_iscdi=true