Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center
The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse'...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2023-03, Vol.14 (11), p.356-369 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 11 |
container_start_page | 356 |
container_title | Chemical science (Cambridge) |
container_volume | 14 |
creator | Parvin, Sahanaz Bothra, Neha Dutta, Supriti Maji, Mamoni Mura, Maglu Kumar, Ashwani Chaudhary, Dhirendra K Rajput, Parasmani Kumar, Manvendra Pati, Swapan K Bhattacharyya, Sayan |
description | The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni
73
Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and
vice versa
. The reverse charge distribution in Ni
73
Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s
−1
turnover frequency at −33 ± 10 and −54 ± 8 mV
versus
the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g
−1
at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O
2
s
−1
turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm
−2
.
An unorthodox intra-lattice 'inverse' charge transfer occurs from the undercoordinated Mo-center to neighbouring Ni-centers in the Ni
73
Mo alloy (−) and NiMo-hydroxide (+). The self-supported couple splits alkaline water at 1.48 V at 10 mA cm
−2
. |
doi_str_mv | 10.1039/d2sc04617b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2788804723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786878264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-36a9192e4f336f766fc3bd07f1ff8127fb42630ec1608ce186ad5a502ecb6fc13</originalsourceid><addsrcrecordid>eNpdkk1vFSEUhonR2KZ2415D4qLGZJSPGWBWRq9fTZq4UNcThjncS2WgBabJ_Qf-bLm99VplA-E8ec4hLwg9peQ1Jbx_M7FsSCuoHB-gY0Za2oiO9w8PZ0aO0GnOl6QuzmnH5GN0xEXPZafoMfp1Hm4gZcBnLpSkG69LcQbOsNnotAZc70K2kLALODjzE3wzR78dJwjLjKdFewweTEnR6KL9NpeME6yX6oEJj1u8hAlSY2JMkwu6uLDGZQP4nsRAKJCeoEdW-wynd_sJ-vHp4_fVl-bi6-fz1buLxrSsLw0Xuqc9g9ZyLqwUwho-TkRaaq2iTNqxZYITMFQQZYAqoadOd4SBGStL-Ql6u_deLeMM06550n64Sm7WaTtE7YZ_K8FthnW8GSghVAjGq-HlnSHF6wVyGWaXDXivA8QlD0wqpUgrb9EX_6GXcUmhvm9HCSUVE22lXu0pk2LOCexhGkqGXcjDB_ZtdRvy-wo_vz__Af0TaQWe7YGUzaH695fw38V2r2k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786878264</pqid></control><display><type>article</type><title>Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Parvin, Sahanaz ; Bothra, Neha ; Dutta, Supriti ; Maji, Mamoni ; Mura, Maglu ; Kumar, Ashwani ; Chaudhary, Dhirendra K ; Rajput, Parasmani ; Kumar, Manvendra ; Pati, Swapan K ; Bhattacharyya, Sayan</creator><creatorcontrib>Parvin, Sahanaz ; Bothra, Neha ; Dutta, Supriti ; Maji, Mamoni ; Mura, Maglu ; Kumar, Ashwani ; Chaudhary, Dhirendra K ; Rajput, Parasmani ; Kumar, Manvendra ; Pati, Swapan K ; Bhattacharyya, Sayan</creatorcontrib><description>The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni
73
Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and
vice versa
. The reverse charge distribution in Ni
73
Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s
−1
turnover frequency at −33 ± 10 and −54 ± 8 mV
versus
the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g
−1
at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O
2
s
−1
turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm
−2
.
An unorthodox intra-lattice 'inverse' charge transfer occurs from the undercoordinated Mo-center to neighbouring Ni-centers in the Ni
73
Mo alloy (−) and NiMo-hydroxide (+). The self-supported couple splits alkaline water at 1.48 V at 10 mA cm
−2
.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc04617b</identifier><identifier>PMID: 36937581</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodizing ; Charge distribution ; Charge transfer ; Chemistry ; Conduction bands ; Electrocatalysts ; Electronegativity ; Electronic structure ; Electrons ; Fine structure ; Hydrogen evolution reactions ; Metal foams ; Molybdenum ; Nanowires ; Nickel ; Orbitals ; Oxidation ; Photoelectrons ; Valence band ; X ray absorption</subject><ispartof>Chemical science (Cambridge), 2023-03, Vol.14 (11), p.356-369</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-36a9192e4f336f766fc3bd07f1ff8127fb42630ec1608ce186ad5a502ecb6fc13</citedby><cites>FETCH-LOGICAL-c429t-36a9192e4f336f766fc3bd07f1ff8127fb42630ec1608ce186ad5a502ecb6fc13</cites><orcidid>0000-0001-6745-7425 ; 0000-0002-5124-7455 ; 0000-0001-8074-965X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016623/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016623/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36937581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parvin, Sahanaz</creatorcontrib><creatorcontrib>Bothra, Neha</creatorcontrib><creatorcontrib>Dutta, Supriti</creatorcontrib><creatorcontrib>Maji, Mamoni</creatorcontrib><creatorcontrib>Mura, Maglu</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Chaudhary, Dhirendra K</creatorcontrib><creatorcontrib>Rajput, Parasmani</creatorcontrib><creatorcontrib>Kumar, Manvendra</creatorcontrib><creatorcontrib>Pati, Swapan K</creatorcontrib><creatorcontrib>Bhattacharyya, Sayan</creatorcontrib><title>Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni
73
Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and
vice versa
. The reverse charge distribution in Ni
73
Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s
−1
turnover frequency at −33 ± 10 and −54 ± 8 mV
versus
the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g
−1
at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O
2
s
−1
turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm
−2
.
An unorthodox intra-lattice 'inverse' charge transfer occurs from the undercoordinated Mo-center to neighbouring Ni-centers in the Ni
73
Mo alloy (−) and NiMo-hydroxide (+). The self-supported couple splits alkaline water at 1.48 V at 10 mA cm
−2
.</description><subject>Anodizing</subject><subject>Charge distribution</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Conduction bands</subject><subject>Electrocatalysts</subject><subject>Electronegativity</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Fine structure</subject><subject>Hydrogen evolution reactions</subject><subject>Metal foams</subject><subject>Molybdenum</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Orbitals</subject><subject>Oxidation</subject><subject>Photoelectrons</subject><subject>Valence band</subject><subject>X ray absorption</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkk1vFSEUhonR2KZ2415D4qLGZJSPGWBWRq9fTZq4UNcThjncS2WgBabJ_Qf-bLm99VplA-E8ec4hLwg9peQ1Jbx_M7FsSCuoHB-gY0Za2oiO9w8PZ0aO0GnOl6QuzmnH5GN0xEXPZafoMfp1Hm4gZcBnLpSkG69LcQbOsNnotAZc70K2kLALODjzE3wzR78dJwjLjKdFewweTEnR6KL9NpeME6yX6oEJj1u8hAlSY2JMkwu6uLDGZQP4nsRAKJCeoEdW-wynd_sJ-vHp4_fVl-bi6-fz1buLxrSsLw0Xuqc9g9ZyLqwUwho-TkRaaq2iTNqxZYITMFQQZYAqoadOd4SBGStL-Ql6u_deLeMM06550n64Sm7WaTtE7YZ_K8FthnW8GSghVAjGq-HlnSHF6wVyGWaXDXivA8QlD0wqpUgrb9EX_6GXcUmhvm9HCSUVE22lXu0pk2LOCexhGkqGXcjDB_ZtdRvy-wo_vz__Af0TaQWe7YGUzaH695fw38V2r2k</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Parvin, Sahanaz</creator><creator>Bothra, Neha</creator><creator>Dutta, Supriti</creator><creator>Maji, Mamoni</creator><creator>Mura, Maglu</creator><creator>Kumar, Ashwani</creator><creator>Chaudhary, Dhirendra K</creator><creator>Rajput, Parasmani</creator><creator>Kumar, Manvendra</creator><creator>Pati, Swapan K</creator><creator>Bhattacharyya, Sayan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6745-7425</orcidid><orcidid>https://orcid.org/0000-0002-5124-7455</orcidid><orcidid>https://orcid.org/0000-0001-8074-965X</orcidid></search><sort><creationdate>20230315</creationdate><title>Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center</title><author>Parvin, Sahanaz ; Bothra, Neha ; Dutta, Supriti ; Maji, Mamoni ; Mura, Maglu ; Kumar, Ashwani ; Chaudhary, Dhirendra K ; Rajput, Parasmani ; Kumar, Manvendra ; Pati, Swapan K ; Bhattacharyya, Sayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-36a9192e4f336f766fc3bd07f1ff8127fb42630ec1608ce186ad5a502ecb6fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodizing</topic><topic>Charge distribution</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Conduction bands</topic><topic>Electrocatalysts</topic><topic>Electronegativity</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Fine structure</topic><topic>Hydrogen evolution reactions</topic><topic>Metal foams</topic><topic>Molybdenum</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Orbitals</topic><topic>Oxidation</topic><topic>Photoelectrons</topic><topic>Valence band</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvin, Sahanaz</creatorcontrib><creatorcontrib>Bothra, Neha</creatorcontrib><creatorcontrib>Dutta, Supriti</creatorcontrib><creatorcontrib>Maji, Mamoni</creatorcontrib><creatorcontrib>Mura, Maglu</creatorcontrib><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Chaudhary, Dhirendra K</creatorcontrib><creatorcontrib>Rajput, Parasmani</creatorcontrib><creatorcontrib>Kumar, Manvendra</creatorcontrib><creatorcontrib>Pati, Swapan K</creatorcontrib><creatorcontrib>Bhattacharyya, Sayan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvin, Sahanaz</au><au>Bothra, Neha</au><au>Dutta, Supriti</au><au>Maji, Mamoni</au><au>Mura, Maglu</au><au>Kumar, Ashwani</au><au>Chaudhary, Dhirendra K</au><au>Rajput, Parasmani</au><au>Kumar, Manvendra</au><au>Pati, Swapan K</au><au>Bhattacharyya, Sayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>14</volume><issue>11</issue><spage>356</spage><epage>369</epage><pages>356-369</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni
73
Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and
vice versa
. The reverse charge distribution in Ni
73
Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s
−1
turnover frequency at −33 ± 10 and −54 ± 8 mV
versus
the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g
−1
at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O
2
s
−1
turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm
−2
.
An unorthodox intra-lattice 'inverse' charge transfer occurs from the undercoordinated Mo-center to neighbouring Ni-centers in the Ni
73
Mo alloy (−) and NiMo-hydroxide (+). The self-supported couple splits alkaline water at 1.48 V at 10 mA cm
−2
.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36937581</pmid><doi>10.1039/d2sc04617b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6745-7425</orcidid><orcidid>https://orcid.org/0000-0002-5124-7455</orcidid><orcidid>https://orcid.org/0000-0001-8074-965X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2023-03, Vol.14 (11), p.356-369 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2788804723 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Anodizing Charge distribution Charge transfer Chemistry Conduction bands Electrocatalysts Electronegativity Electronic structure Electrons Fine structure Hydrogen evolution reactions Metal foams Molybdenum Nanowires Nickel Orbitals Oxidation Photoelectrons Valence band X ray absorption |
title | Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20'intra-lattice'%20charge%20transfer%20in%20nickel-molybdenum%20dual%20electrocatalysts%20regulated%20by%20under-coordinating%20the%20molybdenum%20center&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Parvin,%20Sahanaz&rft.date=2023-03-15&rft.volume=14&rft.issue=11&rft.spage=356&rft.epage=369&rft.pages=356-369&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc04617b&rft_dat=%3Cproquest_rsc_p%3E2786878264%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786878264&rft_id=info:pmid/36937581&rfr_iscdi=true |