Cell‐Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System

Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-06, Vol.19 (25), p.e2207479-n/a
Hauptverfasser: Heinrich, Eilien, Hartwig, Olga, Walt, Christine, Kardani, Arefeh, Koch, Marcus, Jahromi, Leila Pourtalebi, Hoppstädter, Jessica, Kiemer, Alexandra K., Loretz, Brigitta, Lehr, Claus‐Michael, Fuhrmann, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page e2207479
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Heinrich, Eilien
Hartwig, Olga
Walt, Christine
Kardani, Arefeh
Koch, Marcus
Jahromi, Leila Pourtalebi
Hoppstädter, Jessica
Kiemer, Alexandra K.
Loretz, Brigitta
Lehr, Claus‐Michael
Fuhrmann, Gregor
description Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B‐lymphoid cells with low immunogenicity and from non‐pathogenic myxobacteria SBSr073 are introduced here. A large‐scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three‐dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics. Extracellular vesicles from bacteria and human cells are loaded with antimicrobial ciprofloxacin and studied in complex in vitro and in vivo models. Different encapsulation techniques are assessed, including saponin treatment and electroporation. The incorporation of ciprofloxacin into vesicles augmented the biocompatibility of the drug in a zebrafish larvae model. This study provides a relevant basis to understand biogenic drug avenues.
doi_str_mv 10.1002/smll.202207479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2788800920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827857197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-587d0ee431d0475866c4246f79c1d2e3c3581236ce39e15d042129a5db84ad033</originalsourceid><addsrcrecordid>eNqFkbFuFDEQhi1EREKgpUSWaNLcZWzvru0ybCBEuogihNby2bMXB-9usPdA1-URKPKEeRIcXTgkGqoZab7_18z8hLxhMGcA_Dj3Mc45cA6ykvoZOWANE7NGcf181zPYJy9zvgEQjFfyBdkXjRZKAhyQby3G-HD36xRT-IGefsUcXMRMuzHRk2EKyzBOwdFTjGWeNg9391eDx5QnO_gwrOh0jbS9tjHisCqysaOWvg_jCoeiam1KARO93OQJ-1dkr7Mx4-unekiuPn740n6aLT6fnbcni5mrmNCzWkkPiJVgHipZq6ZxFa-aTmrHPEfhRK0YF41DoZHVBeKMa1v7paqsByEOydHW9zaN39eYJ9OH7MqddsBxnQ2XSikAzaGg7_5Bb8Z1Gsp2hqvC1ZJpWaj5lnJpzDlhZ25T6G3aGAbmMQbzGIPZxVAEb59s18se_Q7_8_cC6C3wM0Tc_MfOXF4sFn_NfwOGepVl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827857197</pqid></control><display><type>article</type><title>Cell‐Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heinrich, Eilien ; Hartwig, Olga ; Walt, Christine ; Kardani, Arefeh ; Koch, Marcus ; Jahromi, Leila Pourtalebi ; Hoppstädter, Jessica ; Kiemer, Alexandra K. ; Loretz, Brigitta ; Lehr, Claus‐Michael ; Fuhrmann, Gregor</creator><creatorcontrib>Heinrich, Eilien ; Hartwig, Olga ; Walt, Christine ; Kardani, Arefeh ; Koch, Marcus ; Jahromi, Leila Pourtalebi ; Hoppstädter, Jessica ; Kiemer, Alexandra K. ; Loretz, Brigitta ; Lehr, Claus‐Michael ; Fuhrmann, Gregor</creatorcontrib><description>Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B‐lymphoid cells with low immunogenicity and from non‐pathogenic myxobacteria SBSr073 are introduced here. A large‐scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three‐dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics. Extracellular vesicles from bacteria and human cells are loaded with antimicrobial ciprofloxacin and studied in complex in vitro and in vivo models. Different encapsulation techniques are assessed, including saponin treatment and electroporation. The incorporation of ciprofloxacin into vesicles augmented the biocompatibility of the drug in a zebrafish larvae model. This study provides a relevant basis to understand biogenic drug avenues.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202207479</identifier><identifier>PMID: 36938700</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Biocompatibility ; B‐lymphoid RO cells ; Cell Line ; ciprofloxacin ; Endotoxins ; extracellular vesicles ; Extracellular Vesicles - metabolism ; Humans ; Immune system ; In vivo methods and tests ; Larvae ; Mammals ; myxobacteria ; Nanotechnology ; outer membrane vesicles ; Shigella flexneri ; Spatial distribution ; Tissue Distribution ; Toxicity ; Vesicles ; Zebrafish ; zebrafish larvae</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (25), p.e2207479-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-587d0ee431d0475866c4246f79c1d2e3c3581236ce39e15d042129a5db84ad033</citedby><cites>FETCH-LOGICAL-c4139-587d0ee431d0475866c4246f79c1d2e3c3581236ce39e15d042129a5db84ad033</cites><orcidid>0000-0002-7224-9900 ; 0000-0001-5016-5960 ; 0000-0002-6688-5126 ; 0000-0003-0057-5181 ; 0000-0001-7002-5607 ; 0000-0002-9769-8980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202207479$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202207479$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36938700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinrich, Eilien</creatorcontrib><creatorcontrib>Hartwig, Olga</creatorcontrib><creatorcontrib>Walt, Christine</creatorcontrib><creatorcontrib>Kardani, Arefeh</creatorcontrib><creatorcontrib>Koch, Marcus</creatorcontrib><creatorcontrib>Jahromi, Leila Pourtalebi</creatorcontrib><creatorcontrib>Hoppstädter, Jessica</creatorcontrib><creatorcontrib>Kiemer, Alexandra K.</creatorcontrib><creatorcontrib>Loretz, Brigitta</creatorcontrib><creatorcontrib>Lehr, Claus‐Michael</creatorcontrib><creatorcontrib>Fuhrmann, Gregor</creatorcontrib><title>Cell‐Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B‐lymphoid cells with low immunogenicity and from non‐pathogenic myxobacteria SBSr073 are introduced here. A large‐scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three‐dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics. Extracellular vesicles from bacteria and human cells are loaded with antimicrobial ciprofloxacin and studied in complex in vitro and in vivo models. Different encapsulation techniques are assessed, including saponin treatment and electroporation. The incorporation of ciprofloxacin into vesicles augmented the biocompatibility of the drug in a zebrafish larvae model. This study provides a relevant basis to understand biogenic drug avenues.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Biocompatibility</subject><subject>B‐lymphoid RO cells</subject><subject>Cell Line</subject><subject>ciprofloxacin</subject><subject>Endotoxins</subject><subject>extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Humans</subject><subject>Immune system</subject><subject>In vivo methods and tests</subject><subject>Larvae</subject><subject>Mammals</subject><subject>myxobacteria</subject><subject>Nanotechnology</subject><subject>outer membrane vesicles</subject><subject>Shigella flexneri</subject><subject>Spatial distribution</subject><subject>Tissue Distribution</subject><subject>Toxicity</subject><subject>Vesicles</subject><subject>Zebrafish</subject><subject>zebrafish larvae</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkbFuFDEQhi1EREKgpUSWaNLcZWzvru0ybCBEuogihNby2bMXB-9usPdA1-URKPKEeRIcXTgkGqoZab7_18z8hLxhMGcA_Dj3Mc45cA6ykvoZOWANE7NGcf181zPYJy9zvgEQjFfyBdkXjRZKAhyQby3G-HD36xRT-IGefsUcXMRMuzHRk2EKyzBOwdFTjGWeNg9391eDx5QnO_gwrOh0jbS9tjHisCqysaOWvg_jCoeiam1KARO93OQJ-1dkr7Mx4-unekiuPn740n6aLT6fnbcni5mrmNCzWkkPiJVgHipZq6ZxFa-aTmrHPEfhRK0YF41DoZHVBeKMa1v7paqsByEOydHW9zaN39eYJ9OH7MqddsBxnQ2XSikAzaGg7_5Bb8Z1Gsp2hqvC1ZJpWaj5lnJpzDlhZ25T6G3aGAbmMQbzGIPZxVAEb59s18se_Q7_8_cC6C3wM0Tc_MfOXF4sFn_NfwOGepVl</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Heinrich, Eilien</creator><creator>Hartwig, Olga</creator><creator>Walt, Christine</creator><creator>Kardani, Arefeh</creator><creator>Koch, Marcus</creator><creator>Jahromi, Leila Pourtalebi</creator><creator>Hoppstädter, Jessica</creator><creator>Kiemer, Alexandra K.</creator><creator>Loretz, Brigitta</creator><creator>Lehr, Claus‐Michael</creator><creator>Fuhrmann, Gregor</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7224-9900</orcidid><orcidid>https://orcid.org/0000-0001-5016-5960</orcidid><orcidid>https://orcid.org/0000-0002-6688-5126</orcidid><orcidid>https://orcid.org/0000-0003-0057-5181</orcidid><orcidid>https://orcid.org/0000-0001-7002-5607</orcidid><orcidid>https://orcid.org/0000-0002-9769-8980</orcidid></search><sort><creationdate>20230601</creationdate><title>Cell‐Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System</title><author>Heinrich, Eilien ; Hartwig, Olga ; Walt, Christine ; Kardani, Arefeh ; Koch, Marcus ; Jahromi, Leila Pourtalebi ; Hoppstädter, Jessica ; Kiemer, Alexandra K. ; Loretz, Brigitta ; Lehr, Claus‐Michael ; Fuhrmann, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-587d0ee431d0475866c4246f79c1d2e3c3581236ce39e15d042129a5db84ad033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Biocompatibility</topic><topic>B‐lymphoid RO cells</topic><topic>Cell Line</topic><topic>ciprofloxacin</topic><topic>Endotoxins</topic><topic>extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Humans</topic><topic>Immune system</topic><topic>In vivo methods and tests</topic><topic>Larvae</topic><topic>Mammals</topic><topic>myxobacteria</topic><topic>Nanotechnology</topic><topic>outer membrane vesicles</topic><topic>Shigella flexneri</topic><topic>Spatial distribution</topic><topic>Tissue Distribution</topic><topic>Toxicity</topic><topic>Vesicles</topic><topic>Zebrafish</topic><topic>zebrafish larvae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Eilien</creatorcontrib><creatorcontrib>Hartwig, Olga</creatorcontrib><creatorcontrib>Walt, Christine</creatorcontrib><creatorcontrib>Kardani, Arefeh</creatorcontrib><creatorcontrib>Koch, Marcus</creatorcontrib><creatorcontrib>Jahromi, Leila Pourtalebi</creatorcontrib><creatorcontrib>Hoppstädter, Jessica</creatorcontrib><creatorcontrib>Kiemer, Alexandra K.</creatorcontrib><creatorcontrib>Loretz, Brigitta</creatorcontrib><creatorcontrib>Lehr, Claus‐Michael</creatorcontrib><creatorcontrib>Fuhrmann, Gregor</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Eilien</au><au>Hartwig, Olga</au><au>Walt, Christine</au><au>Kardani, Arefeh</au><au>Koch, Marcus</au><au>Jahromi, Leila Pourtalebi</au><au>Hoppstädter, Jessica</au><au>Kiemer, Alexandra K.</au><au>Loretz, Brigitta</au><au>Lehr, Claus‐Michael</au><au>Fuhrmann, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell‐Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>19</volume><issue>25</issue><spage>e2207479</spage><epage>n/a</epage><pages>e2207479-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B‐lymphoid cells with low immunogenicity and from non‐pathogenic myxobacteria SBSr073 are introduced here. A large‐scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three‐dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics. Extracellular vesicles from bacteria and human cells are loaded with antimicrobial ciprofloxacin and studied in complex in vitro and in vivo models. Different encapsulation techniques are assessed, including saponin treatment and electroporation. The incorporation of ciprofloxacin into vesicles augmented the biocompatibility of the drug in a zebrafish larvae model. This study provides a relevant basis to understand biogenic drug avenues.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36938700</pmid><doi>10.1002/smll.202207479</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7224-9900</orcidid><orcidid>https://orcid.org/0000-0001-5016-5960</orcidid><orcidid>https://orcid.org/0000-0002-6688-5126</orcidid><orcidid>https://orcid.org/0000-0003-0057-5181</orcidid><orcidid>https://orcid.org/0000-0001-7002-5607</orcidid><orcidid>https://orcid.org/0000-0002-9769-8980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (25), p.e2207479-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2788800920
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Anti-Bacterial Agents - pharmacology
Antibiotics
Biocompatibility
B‐lymphoid RO cells
Cell Line
ciprofloxacin
Endotoxins
extracellular vesicles
Extracellular Vesicles - metabolism
Humans
Immune system
In vivo methods and tests
Larvae
Mammals
myxobacteria
Nanotechnology
outer membrane vesicles
Shigella flexneri
Spatial distribution
Tissue Distribution
Toxicity
Vesicles
Zebrafish
zebrafish larvae
title Cell‐Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic Carrier System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%E2%80%90Derived%20Vesicles%20for%20Antibiotic%20Delivery%E2%80%94Understanding%20the%20Challenges%20of%20a%20Biogenic%20Carrier%20System&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Heinrich,%20Eilien&rft.date=2023-06-01&rft.volume=19&rft.issue=25&rft.spage=e2207479&rft.epage=n/a&rft.pages=e2207479-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202207479&rft_dat=%3Cproquest_cross%3E2827857197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827857197&rft_id=info:pmid/36938700&rfr_iscdi=true