Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier–Stokes equations, guarantees the imposition of the no-slip boundary condition over the body–fluid interface. These equations ar...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2003-08, Vol.189 (2), p.351-370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 2 |
container_start_page | 351 |
container_title | Journal of computational physics |
container_volume | 189 |
creator | Lima E Silva, A.L.F. Silveira-Neto, A. Damasceno, J.J.R. |
description | In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier–Stokes equations, guarantees the imposition of the no-slip boundary condition over the body–fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid–fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier–Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers. |
doi_str_mv | 10.1016/S0021-9991(03)00214-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27880764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999103002146</els_id><sourcerecordid>27877687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-bce32f4511b790899e6e3f468abdc144a7ec7fc6bc800eb150fdaafa75c3804b3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVpoNukH6GgU0gObkdrWZJPoSz5UwjtIelZyNKoq2BbG8nesN8-2t3Qa3oaZuY3D948Qr4y-MaAie8PAEtWtW3LLqC-3De8Eh_IgkEL1VIy8ZEs_iGfyOecnwBANVwtSPg1D5iCNT3NYZh7M4U40ujp9BIrFwYccxmUre_jS6Zxi4kaakOyhU3U7vowujKbcxj_0mmNNAxFMKOjXZxHZ9KODjitozsjJ970Gb-81VPy5-b6cXVX3f--_bn6cV9ZruRUdRbrpecNY51sQbUtCqw9F8p0zjLOjUQrvRWdVQDYsQa8M8Yb2dhaAe_qU3J-1N2k-DxjnvQQssW-NyPGOeulVAqk4P8DSimULGBzBG2KOSf0epPCUJxpBnqfgD4koPfv1VDrQwJalLur4x0Wu9uASWcbcLToQkI7aRfDOwqvJquQQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27877687</pqid></control><display><type>article</type><title>Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lima E Silva, A.L.F. ; Silveira-Neto, A. ; Damasceno, J.J.R.</creator><creatorcontrib>Lima E Silva, A.L.F. ; Silveira-Neto, A. ; Damasceno, J.J.R.</creatorcontrib><description>In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier–Stokes equations, guarantees the imposition of the no-slip boundary condition over the body–fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid–fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier–Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/S0021-9991(03)00214-6</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Drag coefficient ; Eulerian–Lagrangian formulation ; Finite-difference method ; Immersed-boundary method</subject><ispartof>Journal of computational physics, 2003-08, Vol.189 (2), p.351-370</ispartof><rights>2003 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-bce32f4511b790899e6e3f468abdc144a7ec7fc6bc800eb150fdaafa75c3804b3</citedby><cites>FETCH-LOGICAL-c487t-bce32f4511b790899e6e3f468abdc144a7ec7fc6bc800eb150fdaafa75c3804b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0021-9991(03)00214-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lima E Silva, A.L.F.</creatorcontrib><creatorcontrib>Silveira-Neto, A.</creatorcontrib><creatorcontrib>Damasceno, J.J.R.</creatorcontrib><title>Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method</title><title>Journal of computational physics</title><description>In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier–Stokes equations, guarantees the imposition of the no-slip boundary condition over the body–fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid–fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier–Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers.</description><subject>Drag coefficient</subject><subject>Eulerian–Lagrangian formulation</subject><subject>Finite-difference method</subject><subject>Immersed-boundary method</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxUVpoNukH6GgU0gObkdrWZJPoSz5UwjtIelZyNKoq2BbG8nesN8-2t3Qa3oaZuY3D948Qr4y-MaAie8PAEtWtW3LLqC-3De8Eh_IgkEL1VIy8ZEs_iGfyOecnwBANVwtSPg1D5iCNT3NYZh7M4U40ujp9BIrFwYccxmUre_jS6Zxi4kaakOyhU3U7vowujKbcxj_0mmNNAxFMKOjXZxHZ9KODjitozsjJ970Gb-81VPy5-b6cXVX3f--_bn6cV9ZruRUdRbrpecNY51sQbUtCqw9F8p0zjLOjUQrvRWdVQDYsQa8M8Yb2dhaAe_qU3J-1N2k-DxjnvQQssW-NyPGOeulVAqk4P8DSimULGBzBG2KOSf0epPCUJxpBnqfgD4koPfv1VDrQwJalLur4x0Wu9uASWcbcLToQkI7aRfDOwqvJquQQQ</recordid><startdate>20030810</startdate><enddate>20030810</enddate><creator>Lima E Silva, A.L.F.</creator><creator>Silveira-Neto, A.</creator><creator>Damasceno, J.J.R.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20030810</creationdate><title>Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method</title><author>Lima E Silva, A.L.F. ; Silveira-Neto, A. ; Damasceno, J.J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-bce32f4511b790899e6e3f468abdc144a7ec7fc6bc800eb150fdaafa75c3804b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Drag coefficient</topic><topic>Eulerian–Lagrangian formulation</topic><topic>Finite-difference method</topic><topic>Immersed-boundary method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima E Silva, A.L.F.</creatorcontrib><creatorcontrib>Silveira-Neto, A.</creatorcontrib><creatorcontrib>Damasceno, J.J.R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima E Silva, A.L.F.</au><au>Silveira-Neto, A.</au><au>Damasceno, J.J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method</atitle><jtitle>Journal of computational physics</jtitle><date>2003-08-10</date><risdate>2003</risdate><volume>189</volume><issue>2</issue><spage>351</spage><epage>370</epage><pages>351-370</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier–Stokes equations, guarantees the imposition of the no-slip boundary condition over the body–fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid–fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier–Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0021-9991(03)00214-6</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2003-08, Vol.189 (2), p.351-370 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_27880764 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Drag coefficient Eulerian–Lagrangian formulation Finite-difference method Immersed-boundary method |
title | Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20two-dimensional%20flows%20over%20a%20circular%20cylinder%20using%20the%20immersed%20boundary%20method&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lima%20E%20Silva,%20A.L.F.&rft.date=2003-08-10&rft.volume=189&rft.issue=2&rft.spage=351&rft.epage=370&rft.pages=351-370&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/S0021-9991(03)00214-6&rft_dat=%3Cproquest_cross%3E27877687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27877687&rft_id=info:pmid/&rft_els_id=S0021999103002146&rfr_iscdi=true |