An adaptive N-body algorithm of optimal order
Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a pra...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2003-05, Vol.187 (1), p.298-317 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | 1 |
container_start_page | 298 |
container_title | Journal of computational physics |
container_volume | 187 |
creator | Pruett, C.David Rudmin, Joseph W Lacy, Justin M |
description | Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical
N-body problem, which is projectively polynomial. Here, we recast the
N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic
N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon
N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant. |
doi_str_mv | 10.1016/S0021-9991(03)00101-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27877483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999103001013</els_id><sourcerecordid>27877483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cb833010ef4b8d100f0a6f1f31d422f46cf4c71ab3461d4f7667cb786f29fee33</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4EYU-ih-jLJk2yJynFLyh6UM8hm7zoyrapybbQf-9uK149PZg3M8wMIecMrhkwefMKUDJaVRW7BH4F0IOUH5ARgwpoqZg8JKM_yjE5yfkLAPRE6BGh02VhvV11zQaLZ1pHvy1s-xFT030uihiK2L8Wti1i8phOyVGwbcaz3zsm7_d3b7NHOn95eJpN59Rxrjvqas15HwODqLVnAAGsDCxw5kVZBiFdEE4xW3MheygoKZWrlZahrAIi52Nysfddpfi9xtyZRZMdtq1dYlxnUyqtlNADcbInuhRzThjMKvVx09YwMMM4ZjeOGZob4GY3jhl0t3sd9i02DSaTXYNLh75J6DrjY_OPww9D2mpN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27877483</pqid></control><display><type>article</type><title>An adaptive N-body algorithm of optimal order</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pruett, C.David ; Rudmin, Joseph W ; Lacy, Justin M</creator><creatorcontrib>Pruett, C.David ; Rudmin, Joseph W ; Lacy, Justin M</creatorcontrib><description>Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical
N-body problem, which is projectively polynomial. Here, we recast the
N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic
N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon
N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/S0021-9991(03)00101-3</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Initial-value problems ; Maclaurin series ; N-body problem ; Optimal order ; Picard iteration ; Power series</subject><ispartof>Journal of computational physics, 2003-05, Vol.187 (1), p.298-317</ispartof><rights>2003 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cb833010ef4b8d100f0a6f1f31d422f46cf4c71ab3461d4f7667cb786f29fee33</citedby><cites>FETCH-LOGICAL-c338t-cb833010ef4b8d100f0a6f1f31d422f46cf4c71ab3461d4f7667cb786f29fee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999103001013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Pruett, C.David</creatorcontrib><creatorcontrib>Rudmin, Joseph W</creatorcontrib><creatorcontrib>Lacy, Justin M</creatorcontrib><title>An adaptive N-body algorithm of optimal order</title><title>Journal of computational physics</title><description>Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical
N-body problem, which is projectively polynomial. Here, we recast the
N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic
N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon
N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant.</description><subject>Initial-value problems</subject><subject>Maclaurin series</subject><subject>N-body problem</subject><subject>Optimal order</subject><subject>Picard iteration</subject><subject>Power series</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4EYU-ih-jLJk2yJynFLyh6UM8hm7zoyrapybbQf-9uK149PZg3M8wMIecMrhkwefMKUDJaVRW7BH4F0IOUH5ARgwpoqZg8JKM_yjE5yfkLAPRE6BGh02VhvV11zQaLZ1pHvy1s-xFT030uihiK2L8Wti1i8phOyVGwbcaz3zsm7_d3b7NHOn95eJpN59Rxrjvqas15HwODqLVnAAGsDCxw5kVZBiFdEE4xW3MheygoKZWrlZahrAIi52Nysfddpfi9xtyZRZMdtq1dYlxnUyqtlNADcbInuhRzThjMKvVx09YwMMM4ZjeOGZob4GY3jhl0t3sd9i02DSaTXYNLh75J6DrjY_OPww9D2mpN</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Pruett, C.David</creator><creator>Rudmin, Joseph W</creator><creator>Lacy, Justin M</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20030501</creationdate><title>An adaptive N-body algorithm of optimal order</title><author>Pruett, C.David ; Rudmin, Joseph W ; Lacy, Justin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cb833010ef4b8d100f0a6f1f31d422f46cf4c71ab3461d4f7667cb786f29fee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Initial-value problems</topic><topic>Maclaurin series</topic><topic>N-body problem</topic><topic>Optimal order</topic><topic>Picard iteration</topic><topic>Power series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pruett, C.David</creatorcontrib><creatorcontrib>Rudmin, Joseph W</creatorcontrib><creatorcontrib>Lacy, Justin M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pruett, C.David</au><au>Rudmin, Joseph W</au><au>Lacy, Justin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive N-body algorithm of optimal order</atitle><jtitle>Journal of computational physics</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>187</volume><issue>1</issue><spage>298</spage><epage>317</epage><pages>298-317</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical
N-body problem, which is projectively polynomial. Here, we recast the
N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic
N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon
N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0021-9991(03)00101-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2003-05, Vol.187 (1), p.298-317 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_27877483 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Initial-value problems Maclaurin series N-body problem Optimal order Picard iteration Power series |
title | An adaptive N-body algorithm of optimal order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20N-body%20algorithm%20of%20optimal%20order&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Pruett,%20C.David&rft.date=2003-05-01&rft.volume=187&rft.issue=1&rft.spage=298&rft.epage=317&rft.pages=298-317&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/S0021-9991(03)00101-3&rft_dat=%3Cproquest_cross%3E27877483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27877483&rft_id=info:pmid/&rft_els_id=S0021999103001013&rfr_iscdi=true |