Functional stochastic modeling and prediction of spatiotemporal processes
Many geophysical processes exhibit complex spatiotemporal interaction. In this paper a class of nonstationary statistical models with finite‐order autoregressive spatiotemporal dynamics is introduced. The associated prediction problem is solved by implementing the Kalman filter in terms of multivari...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. D. Atmospheres 2003-12, Vol.108 (D24), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D24 |
container_start_page | |
container_title | Journal of Geophysical Research. D. Atmospheres |
container_volume | 108 |
creator | Ruiz-Medina, M. D. Alonso, F. J. Angulo, J. M. Bueso, M. C. |
description | Many geophysical processes exhibit complex spatiotemporal interaction. In this paper a class of nonstationary statistical models with finite‐order autoregressive spatiotemporal dynamics is introduced. The associated prediction problem is solved by implementing the Kalman filter in terms of multivariate versions of the spatial Karhunen‐Loève and wavelet transforms. To illustrate the methodology, the AR(2) spatiotemporal interaction model is considered to represent a spatiotemporal data set from near‐surface wind speed. The implementation of the Kalman filter is achieved in terms of the method of moments and the principal component analysis. |
doi_str_mv | 10.1029/2003JD003416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27875761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18048202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4467-53987988563eb17d5c362e4d6932b27565ef8d08a449c64321dcfcc7d0d02c343</originalsourceid><addsrcrecordid>eNqNkT9PwzAQxS0EElXpxgfIxETA_-2MqIXSqioIgRgt13bAkMYhTgX99hiCEBNww90Nv_dOugfAIYInCOLiFENI5pPUKOI7YIAR4znGEO-CAURU5hBjsQ9GMT7BVJRxCtEAzC42tel8qHWVxS6YRx07b7J1sK7y9UOma5s1rbP-E8pCmcVGp7Vz6ya0SdS0wbgYXTwAe6Wuoht9zSG4uzi_HV_mi6vpbHy2yA2lXOSMFFIUUjJO3AoJywzh2FHLC4JXWDDOXCktlJrSwnBKMLKmNEZYaCE2hJIhOOp90-WXjYudWvtoXFXp2oVNVFhIwQRHf4KowIjwfzgiCalMn0zgcQ-aNsTYulI1rV_rdqsQVB8hqJ8hJJz0-Kuv3PZXVs2nNxMEGRNJlfcqHzv39q3S7bPiggim7pdTtbwWWNAxVAV5B9EOld8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18048202</pqid></control><display><type>article</type><title>Functional stochastic modeling and prediction of spatiotemporal processes</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Ruiz-Medina, M. D. ; Alonso, F. J. ; Angulo, J. M. ; Bueso, M. C.</creator><creatorcontrib>Ruiz-Medina, M. D. ; Alonso, F. J. ; Angulo, J. M. ; Bueso, M. C.</creatorcontrib><description>Many geophysical processes exhibit complex spatiotemporal interaction. In this paper a class of nonstationary statistical models with finite‐order autoregressive spatiotemporal dynamics is introduced. The associated prediction problem is solved by implementing the Kalman filter in terms of multivariate versions of the spatial Karhunen‐Loève and wavelet transforms. To illustrate the methodology, the AR(2) spatiotemporal interaction model is considered to represent a spatiotemporal data set from near‐surface wind speed. The implementation of the Kalman filter is achieved in terms of the method of moments and the principal component analysis.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2003JD003416</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Kalman filter ; orthogonal expansion ; spatiotemporal estimation</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2003-12, Vol.108 (D24), p.n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4467-53987988563eb17d5c362e4d6932b27565ef8d08a449c64321dcfcc7d0d02c343</citedby><cites>FETCH-LOGICAL-c4467-53987988563eb17d5c362e4d6932b27565ef8d08a449c64321dcfcc7d0d02c343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003JD003416$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003JD003416$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Ruiz-Medina, M. D.</creatorcontrib><creatorcontrib>Alonso, F. J.</creatorcontrib><creatorcontrib>Angulo, J. M.</creatorcontrib><creatorcontrib>Bueso, M. C.</creatorcontrib><title>Functional stochastic modeling and prediction of spatiotemporal processes</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Many geophysical processes exhibit complex spatiotemporal interaction. In this paper a class of nonstationary statistical models with finite‐order autoregressive spatiotemporal dynamics is introduced. The associated prediction problem is solved by implementing the Kalman filter in terms of multivariate versions of the spatial Karhunen‐Loève and wavelet transforms. To illustrate the methodology, the AR(2) spatiotemporal interaction model is considered to represent a spatiotemporal data set from near‐surface wind speed. The implementation of the Kalman filter is achieved in terms of the method of moments and the principal component analysis.</description><subject>Kalman filter</subject><subject>orthogonal expansion</subject><subject>spatiotemporal estimation</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkT9PwzAQxS0EElXpxgfIxETA_-2MqIXSqioIgRgt13bAkMYhTgX99hiCEBNww90Nv_dOugfAIYInCOLiFENI5pPUKOI7YIAR4znGEO-CAURU5hBjsQ9GMT7BVJRxCtEAzC42tel8qHWVxS6YRx07b7J1sK7y9UOma5s1rbP-E8pCmcVGp7Vz6ya0SdS0wbgYXTwAe6Wuoht9zSG4uzi_HV_mi6vpbHy2yA2lXOSMFFIUUjJO3AoJywzh2FHLC4JXWDDOXCktlJrSwnBKMLKmNEZYaCE2hJIhOOp90-WXjYudWvtoXFXp2oVNVFhIwQRHf4KowIjwfzgiCalMn0zgcQ-aNsTYulI1rV_rdqsQVB8hqJ8hJJz0-Kuv3PZXVs2nNxMEGRNJlfcqHzv39q3S7bPiggim7pdTtbwWWNAxVAV5B9EOld8</recordid><startdate>20031227</startdate><enddate>20031227</enddate><creator>Ruiz-Medina, M. D.</creator><creator>Alonso, F. J.</creator><creator>Angulo, J. M.</creator><creator>Bueso, M. C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20031227</creationdate><title>Functional stochastic modeling and prediction of spatiotemporal processes</title><author>Ruiz-Medina, M. D. ; Alonso, F. J. ; Angulo, J. M. ; Bueso, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4467-53987988563eb17d5c362e4d6932b27565ef8d08a449c64321dcfcc7d0d02c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Kalman filter</topic><topic>orthogonal expansion</topic><topic>spatiotemporal estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Medina, M. D.</creatorcontrib><creatorcontrib>Alonso, F. J.</creatorcontrib><creatorcontrib>Angulo, J. M.</creatorcontrib><creatorcontrib>Bueso, M. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Medina, M. D.</au><au>Alonso, F. J.</au><au>Angulo, J. M.</au><au>Bueso, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional stochastic modeling and prediction of spatiotemporal processes</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2003-12-27</date><risdate>2003</risdate><volume>108</volume><issue>D24</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Many geophysical processes exhibit complex spatiotemporal interaction. In this paper a class of nonstationary statistical models with finite‐order autoregressive spatiotemporal dynamics is introduced. The associated prediction problem is solved by implementing the Kalman filter in terms of multivariate versions of the spatial Karhunen‐Loève and wavelet transforms. To illustrate the methodology, the AR(2) spatiotemporal interaction model is considered to represent a spatiotemporal data set from near‐surface wind speed. The implementation of the Kalman filter is achieved in terms of the method of moments and the principal component analysis.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003JD003416</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. D. Atmospheres, 2003-12, Vol.108 (D24), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_proquest_miscellaneous_27875761 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection |
subjects | Kalman filter orthogonal expansion spatiotemporal estimation |
title | Functional stochastic modeling and prediction of spatiotemporal processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20stochastic%20modeling%20and%20prediction%20of%20spatiotemporal%20processes&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Ruiz-Medina,%20M.%20D.&rft.date=2003-12-27&rft.volume=108&rft.issue=D24&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2003JD003416&rft_dat=%3Cproquest_cross%3E18048202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18048202&rft_id=info:pmid/&rfr_iscdi=true |