Numerical Simulation of Dendrite Arm Coarsening in the Case of Ternary Al Alloys

The secondary dendrite arm spacing at a given cooling rate has been calculated during the solidification by using the numerical method. The Feuer-Wunderlin coarsening parameter valid for the binary alloys has been applied for the ternary AlCuSi system on the basis of the Tensi-Fuchs, Beaverstock and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2003-01, Vol.414-415, p.483-490
Hauptverfasser: Ronto, V, Roosz, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue
container_start_page 483
container_title Materials science forum
container_volume 414-415
creator Ronto, V
Roosz, A
description The secondary dendrite arm spacing at a given cooling rate has been calculated during the solidification by using the numerical method. The Feuer-Wunderlin coarsening parameter valid for the binary alloys has been applied for the ternary AlCuSi system on the basis of the Tensi-Fuchs, Beaverstock and Roosz methods. The solidification time has been substituted from the real cooling curves then the calculated secondary dendrite arm spacing has been compared with the experimental data. It has been stated by the further investigations that the numerical method can be substituted by a much simpler function by which the secondary dendrite arm spacing developing at the end of solidification can exactly be determined.
doi_str_mv 10.4028/www.scientific.net/MSF.414-415.483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27874462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27874462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a1976729159d9c11b66c77ec3fb7ee60d8d2aed771b73ecf4e645fca23413d2d3</originalsourceid><addsrcrecordid>eNqVkF1LwzAUhoMoOKf_IVdeCO2aNE3ay7k5FfyCzeuQpacuo01nkjL2782Y4LVwXs7Ny8M5D0J3JEtZRsvJfr9PvTZgg2mMTi2EyetykTLCEkaKlJX5GRoRzmlSiYKeo1FGiyIpmOCX6Mr7bZblpCR8hD7ehg6c0arFS9MNrQqmt7hv8Bxs7UwAPHUdnvXKebDGfmFjcdgAnikPx9oKnFXugKdtnLY_-Gt00ajWw83vHqPPxcNq9pS8vD8-z6Yvic55FRJFKsEFrUhR1ZUmZM25FgJ03qwFAM_qsqYKaiHIWuSgGwacFY1WNGckr2mdj9Htibtz_fcAPsjOeA1tqyz0g5dUlIIxTmPx_lTUrvfeQSN3znTxZkkyeZQpo0z5J1NGmTLKlFFmTCGjzAiZnyDBKesD6I3c9kN8vfX_wfwAb0eILQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27874462</pqid></control><display><type>article</type><title>Numerical Simulation of Dendrite Arm Coarsening in the Case of Ternary Al Alloys</title><source>Scientific.net Journals</source><creator>Ronto, V ; Roosz, A</creator><creatorcontrib>Ronto, V ; Roosz, A</creatorcontrib><description>The secondary dendrite arm spacing at a given cooling rate has been calculated during the solidification by using the numerical method. The Feuer-Wunderlin coarsening parameter valid for the binary alloys has been applied for the ternary AlCuSi system on the basis of the Tensi-Fuchs, Beaverstock and Roosz methods. The solidification time has been substituted from the real cooling curves then the calculated secondary dendrite arm spacing has been compared with the experimental data. It has been stated by the further investigations that the numerical method can be substituted by a much simpler function by which the secondary dendrite arm spacing developing at the end of solidification can exactly be determined.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.414-415.483</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2003-01, Vol.414-415, p.483-490</ispartof><rights>2003 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a1976729159d9c11b66c77ec3fb7ee60d8d2aed771b73ecf4e645fca23413d2d3</citedby><cites>FETCH-LOGICAL-c369t-a1976729159d9c11b66c77ec3fb7ee60d8d2aed771b73ecf4e645fca23413d2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/458?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ronto, V</creatorcontrib><creatorcontrib>Roosz, A</creatorcontrib><title>Numerical Simulation of Dendrite Arm Coarsening in the Case of Ternary Al Alloys</title><title>Materials science forum</title><description>The secondary dendrite arm spacing at a given cooling rate has been calculated during the solidification by using the numerical method. The Feuer-Wunderlin coarsening parameter valid for the binary alloys has been applied for the ternary AlCuSi system on the basis of the Tensi-Fuchs, Beaverstock and Roosz methods. The solidification time has been substituted from the real cooling curves then the calculated secondary dendrite arm spacing has been compared with the experimental data. It has been stated by the further investigations that the numerical method can be substituted by a much simpler function by which the secondary dendrite arm spacing developing at the end of solidification can exactly be determined.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqVkF1LwzAUhoMoOKf_IVdeCO2aNE3ay7k5FfyCzeuQpacuo01nkjL2782Y4LVwXs7Ny8M5D0J3JEtZRsvJfr9PvTZgg2mMTi2EyetykTLCEkaKlJX5GRoRzmlSiYKeo1FGiyIpmOCX6Mr7bZblpCR8hD7ehg6c0arFS9MNrQqmt7hv8Bxs7UwAPHUdnvXKebDGfmFjcdgAnikPx9oKnFXugKdtnLY_-Gt00ajWw83vHqPPxcNq9pS8vD8-z6Yvic55FRJFKsEFrUhR1ZUmZM25FgJ03qwFAM_qsqYKaiHIWuSgGwacFY1WNGckr2mdj9Htibtz_fcAPsjOeA1tqyz0g5dUlIIxTmPx_lTUrvfeQSN3znTxZkkyeZQpo0z5J1NGmTLKlFFmTCGjzAiZnyDBKesD6I3c9kN8vfX_wfwAb0eILQ</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Ronto, V</creator><creator>Roosz, A</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030101</creationdate><title>Numerical Simulation of Dendrite Arm Coarsening in the Case of Ternary Al Alloys</title><author>Ronto, V ; Roosz, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a1976729159d9c11b66c77ec3fb7ee60d8d2aed771b73ecf4e645fca23413d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ronto, V</creatorcontrib><creatorcontrib>Roosz, A</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronto, V</au><au>Roosz, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Dendrite Arm Coarsening in the Case of Ternary Al Alloys</atitle><jtitle>Materials science forum</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>414-415</volume><spage>483</spage><epage>490</epage><pages>483-490</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>The secondary dendrite arm spacing at a given cooling rate has been calculated during the solidification by using the numerical method. The Feuer-Wunderlin coarsening parameter valid for the binary alloys has been applied for the ternary AlCuSi system on the basis of the Tensi-Fuchs, Beaverstock and Roosz methods. The solidification time has been substituted from the real cooling curves then the calculated secondary dendrite arm spacing has been compared with the experimental data. It has been stated by the further investigations that the numerical method can be substituted by a much simpler function by which the secondary dendrite arm spacing developing at the end of solidification can exactly be determined.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.414-415.483</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2003-01, Vol.414-415, p.483-490
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_27874462
source Scientific.net Journals
title Numerical Simulation of Dendrite Arm Coarsening in the Case of Ternary Al Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Dendrite%20Arm%20Coarsening%20in%20the%20Case%20of%20Ternary%20Al%20Alloys&rft.jtitle=Materials%20science%20forum&rft.au=Ronto,%20V&rft.date=2003-01-01&rft.volume=414-415&rft.spage=483&rft.epage=490&rft.pages=483-490&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.414-415.483&rft_dat=%3Cproquest_cross%3E27874462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27874462&rft_id=info:pmid/&rfr_iscdi=true