Atmospheric Observation and Emission of HFC-134a in China and Its Four Cities

1,1,1,2-Tetrafluoroethane (HFC-134a) is widely used as a refrigerant to replace dichlorodifluoromethane (CFC-12), and a small amount of it is used in the foam and medical aerosol sectors, with a high global warming potential and fast-increasing atmospheric concentration. The emission of HFC-134a in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-03, Vol.57 (12), p.4732-4740
Hauptverfasser: Yi, Liying, Xiang, Xueying, Zhao, Xingchen, Xu, Weiguang, Jiang, Pengnan, Hu, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4740
container_issue 12
container_start_page 4732
container_title Environmental science & technology
container_volume 57
creator Yi, Liying
Xiang, Xueying
Zhao, Xingchen
Xu, Weiguang
Jiang, Pengnan
Hu, Jianxin
description 1,1,1,2-Tetrafluoroethane (HFC-134a) is widely used as a refrigerant to replace dichlorodifluoromethane (CFC-12), and a small amount of it is used in the foam and medical aerosol sectors, with a high global warming potential and fast-increasing atmospheric concentration. The emission of HFC-134a in China has been growing at an average annual growth rate of 14.4% since 2009, reaching 53.0 (47.5–58.7) kt yr–1 in 2020. Among the five emission sources, emissions from the mobile air conditioning (MAC) sector accounted for the highest proportion of 65% on average of the total, followed by the commercial air conditioning (CAC) sector (25%), the medical aerosols sector (8%), the foam sector (2%), and leakage emission from the production (less than 0.1%). The emissions of HFC-134a in four cities in China (Beijing, Guangzhou, Hangzhou, and Lanzhou) were also estimated and discussed. Beijing had the highest HFC-134a emission of 2.2 kt yr–1 in 2020, and Lanzhou had the lowest emission of only 0.2 kt yr–1. In Beijing and Guangzhou, emissions from the CAC sector surpassed those from the MAC sector, becoming the most important source of HFC-134a. The average annual growth rate of HFC-134a’s emissions during 2009–2019 was close to its concentration enhancement growth rate of 12.7%, and the emissions also showed significant correlations with the concentration enhancements in both China and four cities. This indicates the importance of the muti-city and long-term observations for the verification of HFC-134a’s emission estimates at a regional scale.
doi_str_mv 10.1021/acs.est.2c07711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2787214742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787214742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-6826bb26af0426767eefca60b3bf334d4fe7820bf3fc6dcc22cb09b85e556d343</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3iTgRZBuX5I2aY-jbE6Y7KLgrSRpyjLWdiad4L83dXMHwVP44HnfvDwI3RIYE6BkIrUfG9-NqQYhCDlDQ5JQiJI0IedoCEBYlDH-PkBX3m8AgDJIL9GA8YwIAXSIXqZd3frd2jir8Up54z5lZ9sGy6bEs9p63x9thRfzPCIsltg2OF_bRv4Qz53H83bvcG47a_w1uqjk1pub4ztCb_PZa76Ilqun53y6jCTjpIt4SrlSlMsKYsoFF8ZUWnJQTFWMxWVcGZFSCEeleak1pVpBptLEJAkvWcxG6OHQu3Ptxz4IKMJSbbZb2Zh27wsqUkFJLGIa0Ps_6CbsbcK6QGWUA-EJBGpyoLRrvXemKnbO1tJ9FQSK3nQRTBd9-mg6JO6OvXtVm_LE_6oNwOMB6JOnP_-r-wapcYbn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792601650</pqid></control><display><type>article</type><title>Atmospheric Observation and Emission of HFC-134a in China and Its Four Cities</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yi, Liying ; Xiang, Xueying ; Zhao, Xingchen ; Xu, Weiguang ; Jiang, Pengnan ; Hu, Jianxin</creator><creatorcontrib>Yi, Liying ; Xiang, Xueying ; Zhao, Xingchen ; Xu, Weiguang ; Jiang, Pengnan ; Hu, Jianxin</creatorcontrib><description>1,1,1,2-Tetrafluoroethane (HFC-134a) is widely used as a refrigerant to replace dichlorodifluoromethane (CFC-12), and a small amount of it is used in the foam and medical aerosol sectors, with a high global warming potential and fast-increasing atmospheric concentration. The emission of HFC-134a in China has been growing at an average annual growth rate of 14.4% since 2009, reaching 53.0 (47.5–58.7) kt yr–1 in 2020. Among the five emission sources, emissions from the mobile air conditioning (MAC) sector accounted for the highest proportion of 65% on average of the total, followed by the commercial air conditioning (CAC) sector (25%), the medical aerosols sector (8%), the foam sector (2%), and leakage emission from the production (less than 0.1%). The emissions of HFC-134a in four cities in China (Beijing, Guangzhou, Hangzhou, and Lanzhou) were also estimated and discussed. Beijing had the highest HFC-134a emission of 2.2 kt yr–1 in 2020, and Lanzhou had the lowest emission of only 0.2 kt yr–1. In Beijing and Guangzhou, emissions from the CAC sector surpassed those from the MAC sector, becoming the most important source of HFC-134a. The average annual growth rate of HFC-134a’s emissions during 2009–2019 was close to its concentration enhancement growth rate of 12.7%, and the emissions also showed significant correlations with the concentration enhancements in both China and four cities. This indicates the importance of the muti-city and long-term observations for the verification of HFC-134a’s emission estimates at a regional scale.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c07711</identifier><identifier>PMID: 36917702</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Air conditioning ; Air Pollutants - analysis ; Air pollution ; Anthropogenic Impacts on the Atmosphere ; China ; Chlorofluorocarbons ; Cities ; Climate change ; Dichlorodifluoromethane ; Emissions ; Global warming ; Growth rate ; Hydrocarbons, Fluorinated ; Hydrofluorocarbons ; Tetrafluoroethane</subject><ispartof>Environmental science &amp; technology, 2023-03, Vol.57 (12), p.4732-4740</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 28, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-6826bb26af0426767eefca60b3bf334d4fe7820bf3fc6dcc22cb09b85e556d343</citedby><cites>FETCH-LOGICAL-a361t-6826bb26af0426767eefca60b3bf334d4fe7820bf3fc6dcc22cb09b85e556d343</cites><orcidid>0000-0003-2785-4420 ; 0000-0002-7060-4673 ; 0000-0003-3202-1730 ; 0000-0003-3987-156X ; 0000-0001-8076-442X ; 0000-0002-9889-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c07711$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c07711$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36917702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yi, Liying</creatorcontrib><creatorcontrib>Xiang, Xueying</creatorcontrib><creatorcontrib>Zhao, Xingchen</creatorcontrib><creatorcontrib>Xu, Weiguang</creatorcontrib><creatorcontrib>Jiang, Pengnan</creatorcontrib><creatorcontrib>Hu, Jianxin</creatorcontrib><title>Atmospheric Observation and Emission of HFC-134a in China and Its Four Cities</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>1,1,1,2-Tetrafluoroethane (HFC-134a) is widely used as a refrigerant to replace dichlorodifluoromethane (CFC-12), and a small amount of it is used in the foam and medical aerosol sectors, with a high global warming potential and fast-increasing atmospheric concentration. The emission of HFC-134a in China has been growing at an average annual growth rate of 14.4% since 2009, reaching 53.0 (47.5–58.7) kt yr–1 in 2020. Among the five emission sources, emissions from the mobile air conditioning (MAC) sector accounted for the highest proportion of 65% on average of the total, followed by the commercial air conditioning (CAC) sector (25%), the medical aerosols sector (8%), the foam sector (2%), and leakage emission from the production (less than 0.1%). The emissions of HFC-134a in four cities in China (Beijing, Guangzhou, Hangzhou, and Lanzhou) were also estimated and discussed. Beijing had the highest HFC-134a emission of 2.2 kt yr–1 in 2020, and Lanzhou had the lowest emission of only 0.2 kt yr–1. In Beijing and Guangzhou, emissions from the CAC sector surpassed those from the MAC sector, becoming the most important source of HFC-134a. The average annual growth rate of HFC-134a’s emissions during 2009–2019 was close to its concentration enhancement growth rate of 12.7%, and the emissions also showed significant correlations with the concentration enhancements in both China and four cities. This indicates the importance of the muti-city and long-term observations for the verification of HFC-134a’s emission estimates at a regional scale.</description><subject>Aerosols</subject><subject>Air conditioning</subject><subject>Air Pollutants - analysis</subject><subject>Air pollution</subject><subject>Anthropogenic Impacts on the Atmosphere</subject><subject>China</subject><subject>Chlorofluorocarbons</subject><subject>Cities</subject><subject>Climate change</subject><subject>Dichlorodifluoromethane</subject><subject>Emissions</subject><subject>Global warming</subject><subject>Growth rate</subject><subject>Hydrocarbons, Fluorinated</subject><subject>Hydrofluorocarbons</subject><subject>Tetrafluoroethane</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFLwzAYhoMobk7P3iTgRZBuX5I2aY-jbE6Y7KLgrSRpyjLWdiad4L83dXMHwVP44HnfvDwI3RIYE6BkIrUfG9-NqQYhCDlDQ5JQiJI0IedoCEBYlDH-PkBX3m8AgDJIL9GA8YwIAXSIXqZd3frd2jir8Up54z5lZ9sGy6bEs9p63x9thRfzPCIsltg2OF_bRv4Qz53H83bvcG47a_w1uqjk1pub4ztCb_PZa76Ilqun53y6jCTjpIt4SrlSlMsKYsoFF8ZUWnJQTFWMxWVcGZFSCEeleak1pVpBptLEJAkvWcxG6OHQu3Ptxz4IKMJSbbZb2Zh27wsqUkFJLGIa0Ps_6CbsbcK6QGWUA-EJBGpyoLRrvXemKnbO1tJ9FQSK3nQRTBd9-mg6JO6OvXtVm_LE_6oNwOMB6JOnP_-r-wapcYbn</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Yi, Liying</creator><creator>Xiang, Xueying</creator><creator>Zhao, Xingchen</creator><creator>Xu, Weiguang</creator><creator>Jiang, Pengnan</creator><creator>Hu, Jianxin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2785-4420</orcidid><orcidid>https://orcid.org/0000-0002-7060-4673</orcidid><orcidid>https://orcid.org/0000-0003-3202-1730</orcidid><orcidid>https://orcid.org/0000-0003-3987-156X</orcidid><orcidid>https://orcid.org/0000-0001-8076-442X</orcidid><orcidid>https://orcid.org/0000-0002-9889-5150</orcidid></search><sort><creationdate>20230328</creationdate><title>Atmospheric Observation and Emission of HFC-134a in China and Its Four Cities</title><author>Yi, Liying ; Xiang, Xueying ; Zhao, Xingchen ; Xu, Weiguang ; Jiang, Pengnan ; Hu, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-6826bb26af0426767eefca60b3bf334d4fe7820bf3fc6dcc22cb09b85e556d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Air conditioning</topic><topic>Air Pollutants - analysis</topic><topic>Air pollution</topic><topic>Anthropogenic Impacts on the Atmosphere</topic><topic>China</topic><topic>Chlorofluorocarbons</topic><topic>Cities</topic><topic>Climate change</topic><topic>Dichlorodifluoromethane</topic><topic>Emissions</topic><topic>Global warming</topic><topic>Growth rate</topic><topic>Hydrocarbons, Fluorinated</topic><topic>Hydrofluorocarbons</topic><topic>Tetrafluoroethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Liying</creatorcontrib><creatorcontrib>Xiang, Xueying</creatorcontrib><creatorcontrib>Zhao, Xingchen</creatorcontrib><creatorcontrib>Xu, Weiguang</creatorcontrib><creatorcontrib>Jiang, Pengnan</creatorcontrib><creatorcontrib>Hu, Jianxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Liying</au><au>Xiang, Xueying</au><au>Zhao, Xingchen</au><au>Xu, Weiguang</au><au>Jiang, Pengnan</au><au>Hu, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Observation and Emission of HFC-134a in China and Its Four Cities</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2023-03-28</date><risdate>2023</risdate><volume>57</volume><issue>12</issue><spage>4732</spage><epage>4740</epage><pages>4732-4740</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>1,1,1,2-Tetrafluoroethane (HFC-134a) is widely used as a refrigerant to replace dichlorodifluoromethane (CFC-12), and a small amount of it is used in the foam and medical aerosol sectors, with a high global warming potential and fast-increasing atmospheric concentration. The emission of HFC-134a in China has been growing at an average annual growth rate of 14.4% since 2009, reaching 53.0 (47.5–58.7) kt yr–1 in 2020. Among the five emission sources, emissions from the mobile air conditioning (MAC) sector accounted for the highest proportion of 65% on average of the total, followed by the commercial air conditioning (CAC) sector (25%), the medical aerosols sector (8%), the foam sector (2%), and leakage emission from the production (less than 0.1%). The emissions of HFC-134a in four cities in China (Beijing, Guangzhou, Hangzhou, and Lanzhou) were also estimated and discussed. Beijing had the highest HFC-134a emission of 2.2 kt yr–1 in 2020, and Lanzhou had the lowest emission of only 0.2 kt yr–1. In Beijing and Guangzhou, emissions from the CAC sector surpassed those from the MAC sector, becoming the most important source of HFC-134a. The average annual growth rate of HFC-134a’s emissions during 2009–2019 was close to its concentration enhancement growth rate of 12.7%, and the emissions also showed significant correlations with the concentration enhancements in both China and four cities. This indicates the importance of the muti-city and long-term observations for the verification of HFC-134a’s emission estimates at a regional scale.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36917702</pmid><doi>10.1021/acs.est.2c07711</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2785-4420</orcidid><orcidid>https://orcid.org/0000-0002-7060-4673</orcidid><orcidid>https://orcid.org/0000-0003-3202-1730</orcidid><orcidid>https://orcid.org/0000-0003-3987-156X</orcidid><orcidid>https://orcid.org/0000-0001-8076-442X</orcidid><orcidid>https://orcid.org/0000-0002-9889-5150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2023-03, Vol.57 (12), p.4732-4740
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2787214742
source ACS Publications; MEDLINE
subjects Aerosols
Air conditioning
Air Pollutants - analysis
Air pollution
Anthropogenic Impacts on the Atmosphere
China
Chlorofluorocarbons
Cities
Climate change
Dichlorodifluoromethane
Emissions
Global warming
Growth rate
Hydrocarbons, Fluorinated
Hydrofluorocarbons
Tetrafluoroethane
title Atmospheric Observation and Emission of HFC-134a in China and Its Four Cities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Observation%20and%20Emission%20of%20HFC-134a%20in%20China%20and%20Its%20Four%20Cities&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Yi,%20Liying&rft.date=2023-03-28&rft.volume=57&rft.issue=12&rft.spage=4732&rft.epage=4740&rft.pages=4732-4740&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c07711&rft_dat=%3Cproquest_cross%3E2787214742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792601650&rft_id=info:pmid/36917702&rfr_iscdi=true