Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing
Neuromorphic computing based on two-dimensional transition-metal dichalcogenides (2D TMDs) has attracted significant attention recently due to their extraordinary properties generated by the atomic-thick layered structure. This study presents sulfur-defect-assisted MoS2 artificial synaptic devices f...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-03, Vol.15 (12), p.15839-15847 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15847 |
---|---|
container_issue | 12 |
container_start_page | 15839 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Lee, Eunho Kim, Junyoung Park, Juhong Hwang, Jinwoo Jang, Hyoik Cho, Kilwon Choi, Wonbong |
description | Neuromorphic computing based on two-dimensional transition-metal dichalcogenides (2D TMDs) has attracted significant attention recently due to their extraordinary properties generated by the atomic-thick layered structure. This study presents sulfur-defect-assisted MoS2 artificial synaptic devices fabricated by a simple sputtering process, followed by a precise sulfur (S) vacancy-engineering process. While the as-sputtered MoS2 film does not show synaptic behavior, the S vacancy-controlled MoS2 film exhibits excellent synapse with remarkable nonvolatile memory characteristics such as a high switching ratio (∼103), a large memory window, and long retention time (∼104 s) in addition to synaptic functions such as paired-pulse facilitation (PPF) and long-term potentiation (LTP)/depression (LTD). The synaptic device working mechanism of Schottky barrier height modulation by redistributing S vacancies was systemically analyzed by electrical, physical, and microscopy characterizations. The presented MoS2 synaptic device, based on the precise defect engineering of sputtered MoS2, is a facile, low-cost, complementary metal-oxide semiconductor (CMOS)-compatible, and scalable method and provides a procedural guideline for the design of practical 2D TMD-based neuromorphic computing. |
doi_str_mv | 10.1021/acsami.2c21688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2787213573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787213573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-17bce58a319c5e4e78cf5ae7c59893685024c91b8e28db33e5220536f58612a93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKe3XudShM4madr0Urb5AfMDN69LGk9nRprMpFXqrzdjw6tzeHl44X0QuiTphKSU3EgVZKsnVFGSC3GERqTMskRQTo___yw7RWchbNI0ZzTlI_T9BtLoX23XeG5Add5ZrfBysHIbIOB6wDNoYo7ndq0tgN-R2uJXZwblh9BJY2KOVz8umekWbNDOSoOf3JLixnn8DL13rfPbz9g7de2272LFOTpppAlwcbhj9H43X00fksXL_eP0dpFISlmXkKJWwIVkpFQcMiiEariEQvFSlCwXPKWZKkktgIqPmjHgNK5iecNFTqgs2Rhd7Xu33n31ELqq1UGBMdKC60NFC1FQwnjBInq9R6PHauN6H2eEiqTVTm61l1sd5LI_WrJviw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787213573</pqid></control><display><type>article</type><title>Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing</title><source>ACS Publications</source><creator>Lee, Eunho ; Kim, Junyoung ; Park, Juhong ; Hwang, Jinwoo ; Jang, Hyoik ; Cho, Kilwon ; Choi, Wonbong</creator><creatorcontrib>Lee, Eunho ; Kim, Junyoung ; Park, Juhong ; Hwang, Jinwoo ; Jang, Hyoik ; Cho, Kilwon ; Choi, Wonbong</creatorcontrib><description>Neuromorphic computing based on two-dimensional transition-metal dichalcogenides (2D TMDs) has attracted significant attention recently due to their extraordinary properties generated by the atomic-thick layered structure. This study presents sulfur-defect-assisted MoS2 artificial synaptic devices fabricated by a simple sputtering process, followed by a precise sulfur (S) vacancy-engineering process. While the as-sputtered MoS2 film does not show synaptic behavior, the S vacancy-controlled MoS2 film exhibits excellent synapse with remarkable nonvolatile memory characteristics such as a high switching ratio (∼103), a large memory window, and long retention time (∼104 s) in addition to synaptic functions such as paired-pulse facilitation (PPF) and long-term potentiation (LTP)/depression (LTD). The synaptic device working mechanism of Schottky barrier height modulation by redistributing S vacancies was systemically analyzed by electrical, physical, and microscopy characterizations. The presented MoS2 synaptic device, based on the precise defect engineering of sputtered MoS2, is a facile, low-cost, complementary metal-oxide semiconductor (CMOS)-compatible, and scalable method and provides a procedural guideline for the design of practical 2D TMD-based neuromorphic computing.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c21688</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2023-03, Vol.15 (12), p.15839-15847</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5023-4030 ; 0000-0002-7896-7655 ; 0000-0003-0321-3629 ; 0000-0002-8564-6999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c21688$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c21688$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lee, Eunho</creatorcontrib><creatorcontrib>Kim, Junyoung</creatorcontrib><creatorcontrib>Park, Juhong</creatorcontrib><creatorcontrib>Hwang, Jinwoo</creatorcontrib><creatorcontrib>Jang, Hyoik</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Choi, Wonbong</creatorcontrib><title>Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Neuromorphic computing based on two-dimensional transition-metal dichalcogenides (2D TMDs) has attracted significant attention recently due to their extraordinary properties generated by the atomic-thick layered structure. This study presents sulfur-defect-assisted MoS2 artificial synaptic devices fabricated by a simple sputtering process, followed by a precise sulfur (S) vacancy-engineering process. While the as-sputtered MoS2 film does not show synaptic behavior, the S vacancy-controlled MoS2 film exhibits excellent synapse with remarkable nonvolatile memory characteristics such as a high switching ratio (∼103), a large memory window, and long retention time (∼104 s) in addition to synaptic functions such as paired-pulse facilitation (PPF) and long-term potentiation (LTP)/depression (LTD). The synaptic device working mechanism of Schottky barrier height modulation by redistributing S vacancies was systemically analyzed by electrical, physical, and microscopy characterizations. The presented MoS2 synaptic device, based on the precise defect engineering of sputtered MoS2, is a facile, low-cost, complementary metal-oxide semiconductor (CMOS)-compatible, and scalable method and provides a procedural guideline for the design of practical 2D TMD-based neuromorphic computing.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKe3XudShM4madr0Urb5AfMDN69LGk9nRprMpFXqrzdjw6tzeHl44X0QuiTphKSU3EgVZKsnVFGSC3GERqTMskRQTo___yw7RWchbNI0ZzTlI_T9BtLoX23XeG5Add5ZrfBysHIbIOB6wDNoYo7ndq0tgN-R2uJXZwblh9BJY2KOVz8umekWbNDOSoOf3JLixnn8DL13rfPbz9g7de2272LFOTpppAlwcbhj9H43X00fksXL_eP0dpFISlmXkKJWwIVkpFQcMiiEariEQvFSlCwXPKWZKkktgIqPmjHgNK5iecNFTqgs2Rhd7Xu33n31ELqq1UGBMdKC60NFC1FQwnjBInq9R6PHauN6H2eEiqTVTm61l1sd5LI_WrJviw</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Lee, Eunho</creator><creator>Kim, Junyoung</creator><creator>Park, Juhong</creator><creator>Hwang, Jinwoo</creator><creator>Jang, Hyoik</creator><creator>Cho, Kilwon</creator><creator>Choi, Wonbong</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5023-4030</orcidid><orcidid>https://orcid.org/0000-0002-7896-7655</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid><orcidid>https://orcid.org/0000-0002-8564-6999</orcidid></search><sort><creationdate>20230329</creationdate><title>Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing</title><author>Lee, Eunho ; Kim, Junyoung ; Park, Juhong ; Hwang, Jinwoo ; Jang, Hyoik ; Cho, Kilwon ; Choi, Wonbong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-17bce58a319c5e4e78cf5ae7c59893685024c91b8e28db33e5220536f58612a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eunho</creatorcontrib><creatorcontrib>Kim, Junyoung</creatorcontrib><creatorcontrib>Park, Juhong</creatorcontrib><creatorcontrib>Hwang, Jinwoo</creatorcontrib><creatorcontrib>Jang, Hyoik</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><creatorcontrib>Choi, Wonbong</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eunho</au><au>Kim, Junyoung</au><au>Park, Juhong</au><au>Hwang, Jinwoo</au><au>Jang, Hyoik</au><au>Cho, Kilwon</au><au>Choi, Wonbong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-29</date><risdate>2023</risdate><volume>15</volume><issue>12</issue><spage>15839</spage><epage>15847</epage><pages>15839-15847</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Neuromorphic computing based on two-dimensional transition-metal dichalcogenides (2D TMDs) has attracted significant attention recently due to their extraordinary properties generated by the atomic-thick layered structure. This study presents sulfur-defect-assisted MoS2 artificial synaptic devices fabricated by a simple sputtering process, followed by a precise sulfur (S) vacancy-engineering process. While the as-sputtered MoS2 film does not show synaptic behavior, the S vacancy-controlled MoS2 film exhibits excellent synapse with remarkable nonvolatile memory characteristics such as a high switching ratio (∼103), a large memory window, and long retention time (∼104 s) in addition to synaptic functions such as paired-pulse facilitation (PPF) and long-term potentiation (LTP)/depression (LTD). The synaptic device working mechanism of Schottky barrier height modulation by redistributing S vacancies was systemically analyzed by electrical, physical, and microscopy characterizations. The presented MoS2 synaptic device, based on the precise defect engineering of sputtered MoS2, is a facile, low-cost, complementary metal-oxide semiconductor (CMOS)-compatible, and scalable method and provides a procedural guideline for the design of practical 2D TMD-based neuromorphic computing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c21688</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5023-4030</orcidid><orcidid>https://orcid.org/0000-0002-7896-7655</orcidid><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid><orcidid>https://orcid.org/0000-0002-8564-6999</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-03, Vol.15 (12), p.15839-15847 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2787213573 |
source | ACS Publications |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | Realizing Electronic Synapses by Defect Engineering in Polycrystalline Two-Dimensional MoS2 for Neuromorphic Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20Electronic%20Synapses%20by%20Defect%20Engineering%20in%20Polycrystalline%20Two-Dimensional%20MoS2%20for%20Neuromorphic%20Computing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Eunho&rft.date=2023-03-29&rft.volume=15&rft.issue=12&rft.spage=15839&rft.epage=15847&rft.pages=15839-15847&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c21688&rft_dat=%3Cproquest_acs_j%3E2787213573%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787213573&rft_id=info:pmid/&rfr_iscdi=true |