Self‐Assembled Construction of Robust and Super Elastic Graphene Aerogel for High‐Efficient Formaldehyde Removal and Multifunctional Application
Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT‐PEI@reduced GA (rG...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-06, Vol.19 (24), p.e2300234-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | e2300234 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Wang, Wuyou Zhao, Xiaowen Ye, Lin |
description | Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT‐PEI@reduced GA (rGA) is fabricated via hydrothermal self‐assembly, pre‐frozen, and hydrazine reduction process. Introducing CNT‐PEI contributes to well‐interconnected/robust 3D network construction by connecting reduced graphene oxide (rGO) nanosheets through enhancing cross‐linking, while entangled CNT‐PEI is intercalated into rGO layers to avoid serious restacking of sheets, producing larger surface area and more formaldehyde adsorption sites. Ultralight CNT‐PEI@rGA exhibits extreme high strength (276.37 kPa), reversible compressibility at 90% strain, and structural stability, while FA adsorption capacity reached 568.41 mg g‐1, ≈3.28 times of rGA, derivable from synergistic chemical‐physical adsorption effect. Furthermore, CNT‐PEI@rGA is ground into powder for first preparing polyoxymethylene (POM)/CNT‐PEI@rGA composite, while formaldehyde emission amount is 69.63%/73.96% lower than that of POM at 60/230 °C. Moreover, CNT‐PEI@rGA presents outstanding piezoresistive‐sensing and thermal insulation properties, exhibiting high strain sensitivity, wide strain detection range, and long‐term durability.
Introducing carbon nanotube (CNT)‐polyethyleneimine (PEI) into reduced graphene oxide layers contributes to well‐interconnected/robust 3D network construction reduced graphene aerogel (rGA) through enhancing cross‐linking/support effect, simultaneously achieving exceptional strength and super‐elasticity, while entangled CNT‐PEI avoids sheets restacking, presenting significant formaldehyde removal capacity and outstanding piezoresistiv‐sensing and thermal insulation properties. |
doi_str_mv | 10.1002/smll.202300234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2787213445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825385696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-e0e3d104e4a031156ef8c67d2c2bcaab3ff8b03134692e3f40fe9b959196e4ae3</originalsourceid><addsrcrecordid>eNqFkbtu2zAUhokgRW7tmrEgkCWLXV4kShoNw0kKOCgQt7NAUYcxA0pUSbGFtzxChz5hnqR0nDpAlkzkIb_zkQc_QueUTCkh7EvorJ0ywngqeHaATqigfCJKVh3u95Qco9MQHgjhlGXFETrmoqJVSfMT9HcFVj89_pmFAF1jocVz14fRRzUa12On8Z1rYhix7Fu8igN4vLAyjEbhay-HNfSAZ-DdPVisncc35n6ddAutjTLQj_jK-U7aFtabFvAddO6XtM-y22hHo2P__FA6mw2DNUpuq4_og5Y2wKeX9Qz9uFp8n99Mlt-uv85ny4niBc8mQIC3lGSQyTQZzQXoUomiZYo1SsqGa1026YZnomLAdUY0VE2Vp9lF6gF-hi533sG7nxHCWHcmKLBW9uBiqFlRFiy1Z3lCL96gDy769O9ElSznZS4qkajpjlLeheBB14M3nfSbmpJ6m1e9zave55UaPr9oY9NBu8f_B5SAagf8NhY27-jq1e1y-Sr_B8djpiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825385696</pqid></control><display><type>article</type><title>Self‐Assembled Construction of Robust and Super Elastic Graphene Aerogel for High‐Efficient Formaldehyde Removal and Multifunctional Application</title><source>Wiley Journals</source><creator>Wang, Wuyou ; Zhao, Xiaowen ; Ye, Lin</creator><creatorcontrib>Wang, Wuyou ; Zhao, Xiaowen ; Ye, Lin</creatorcontrib><description>Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT‐PEI@reduced GA (rGA) is fabricated via hydrothermal self‐assembly, pre‐frozen, and hydrazine reduction process. Introducing CNT‐PEI contributes to well‐interconnected/robust 3D network construction by connecting reduced graphene oxide (rGO) nanosheets through enhancing cross‐linking, while entangled CNT‐PEI is intercalated into rGO layers to avoid serious restacking of sheets, producing larger surface area and more formaldehyde adsorption sites. Ultralight CNT‐PEI@rGA exhibits extreme high strength (276.37 kPa), reversible compressibility at 90% strain, and structural stability, while FA adsorption capacity reached 568.41 mg g‐1, ≈3.28 times of rGA, derivable from synergistic chemical‐physical adsorption effect. Furthermore, CNT‐PEI@rGA is ground into powder for first preparing polyoxymethylene (POM)/CNT‐PEI@rGA composite, while formaldehyde emission amount is 69.63%/73.96% lower than that of POM at 60/230 °C. Moreover, CNT‐PEI@rGA presents outstanding piezoresistive‐sensing and thermal insulation properties, exhibiting high strain sensitivity, wide strain detection range, and long‐term durability.
Introducing carbon nanotube (CNT)‐polyethyleneimine (PEI) into reduced graphene oxide layers contributes to well‐interconnected/robust 3D network construction reduced graphene aerogel (rGA) through enhancing cross‐linking/support effect, simultaneously achieving exceptional strength and super‐elasticity, while entangled CNT‐PEI avoids sheets restacking, presenting significant formaldehyde removal capacity and outstanding piezoresistiv‐sensing and thermal insulation properties.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300234</identifier><identifier>PMID: 36919815</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Aerogels ; Aldehydes ; Carbon nanotubes ; Compressibility ; enhancing mechanical strength and resilience ; Formaldehyde ; formaldehyde removal ; Graphene ; graphene aerogel (GA) ; Hydrazines ; multifunctional applications ; Nanotechnology ; Polyethyleneimine ; Robustness ; Self-assembly ; Structural stability ; Surface chemistry ; Thermal insulation ; well‐interconnected 3D network structures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (24), p.e2300234-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-e0e3d104e4a031156ef8c67d2c2bcaab3ff8b03134692e3f40fe9b959196e4ae3</citedby><cites>FETCH-LOGICAL-c3734-e0e3d104e4a031156ef8c67d2c2bcaab3ff8b03134692e3f40fe9b959196e4ae3</cites><orcidid>0000-0003-4164-6038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202300234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202300234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36919815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wuyou</creatorcontrib><creatorcontrib>Zhao, Xiaowen</creatorcontrib><creatorcontrib>Ye, Lin</creatorcontrib><title>Self‐Assembled Construction of Robust and Super Elastic Graphene Aerogel for High‐Efficient Formaldehyde Removal and Multifunctional Application</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT‐PEI@reduced GA (rGA) is fabricated via hydrothermal self‐assembly, pre‐frozen, and hydrazine reduction process. Introducing CNT‐PEI contributes to well‐interconnected/robust 3D network construction by connecting reduced graphene oxide (rGO) nanosheets through enhancing cross‐linking, while entangled CNT‐PEI is intercalated into rGO layers to avoid serious restacking of sheets, producing larger surface area and more formaldehyde adsorption sites. Ultralight CNT‐PEI@rGA exhibits extreme high strength (276.37 kPa), reversible compressibility at 90% strain, and structural stability, while FA adsorption capacity reached 568.41 mg g‐1, ≈3.28 times of rGA, derivable from synergistic chemical‐physical adsorption effect. Furthermore, CNT‐PEI@rGA is ground into powder for first preparing polyoxymethylene (POM)/CNT‐PEI@rGA composite, while formaldehyde emission amount is 69.63%/73.96% lower than that of POM at 60/230 °C. Moreover, CNT‐PEI@rGA presents outstanding piezoresistive‐sensing and thermal insulation properties, exhibiting high strain sensitivity, wide strain detection range, and long‐term durability.
Introducing carbon nanotube (CNT)‐polyethyleneimine (PEI) into reduced graphene oxide layers contributes to well‐interconnected/robust 3D network construction reduced graphene aerogel (rGA) through enhancing cross‐linking/support effect, simultaneously achieving exceptional strength and super‐elasticity, while entangled CNT‐PEI avoids sheets restacking, presenting significant formaldehyde removal capacity and outstanding piezoresistiv‐sensing and thermal insulation properties.</description><subject>Adsorption</subject><subject>Aerogels</subject><subject>Aldehydes</subject><subject>Carbon nanotubes</subject><subject>Compressibility</subject><subject>enhancing mechanical strength and resilience</subject><subject>Formaldehyde</subject><subject>formaldehyde removal</subject><subject>Graphene</subject><subject>graphene aerogel (GA)</subject><subject>Hydrazines</subject><subject>multifunctional applications</subject><subject>Nanotechnology</subject><subject>Polyethyleneimine</subject><subject>Robustness</subject><subject>Self-assembly</subject><subject>Structural stability</subject><subject>Surface chemistry</subject><subject>Thermal insulation</subject><subject>well‐interconnected 3D network structures</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkbtu2zAUhokgRW7tmrEgkCWLXV4kShoNw0kKOCgQt7NAUYcxA0pUSbGFtzxChz5hnqR0nDpAlkzkIb_zkQc_QueUTCkh7EvorJ0ywngqeHaATqigfCJKVh3u95Qco9MQHgjhlGXFETrmoqJVSfMT9HcFVj89_pmFAF1jocVz14fRRzUa12On8Z1rYhix7Fu8igN4vLAyjEbhay-HNfSAZ-DdPVisncc35n6ddAutjTLQj_jK-U7aFtabFvAddO6XtM-y22hHo2P__FA6mw2DNUpuq4_og5Y2wKeX9Qz9uFp8n99Mlt-uv85ny4niBc8mQIC3lGSQyTQZzQXoUomiZYo1SsqGa1026YZnomLAdUY0VE2Vp9lF6gF-hi533sG7nxHCWHcmKLBW9uBiqFlRFiy1Z3lCL96gDy769O9ElSznZS4qkajpjlLeheBB14M3nfSbmpJ6m1e9zave55UaPr9oY9NBu8f_B5SAagf8NhY27-jq1e1y-Sr_B8djpiI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wang, Wuyou</creator><creator>Zhao, Xiaowen</creator><creator>Ye, Lin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4164-6038</orcidid></search><sort><creationdate>20230601</creationdate><title>Self‐Assembled Construction of Robust and Super Elastic Graphene Aerogel for High‐Efficient Formaldehyde Removal and Multifunctional Application</title><author>Wang, Wuyou ; Zhao, Xiaowen ; Ye, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-e0e3d104e4a031156ef8c67d2c2bcaab3ff8b03134692e3f40fe9b959196e4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Aerogels</topic><topic>Aldehydes</topic><topic>Carbon nanotubes</topic><topic>Compressibility</topic><topic>enhancing mechanical strength and resilience</topic><topic>Formaldehyde</topic><topic>formaldehyde removal</topic><topic>Graphene</topic><topic>graphene aerogel (GA)</topic><topic>Hydrazines</topic><topic>multifunctional applications</topic><topic>Nanotechnology</topic><topic>Polyethyleneimine</topic><topic>Robustness</topic><topic>Self-assembly</topic><topic>Structural stability</topic><topic>Surface chemistry</topic><topic>Thermal insulation</topic><topic>well‐interconnected 3D network structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wuyou</creatorcontrib><creatorcontrib>Zhao, Xiaowen</creatorcontrib><creatorcontrib>Ye, Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wuyou</au><au>Zhao, Xiaowen</au><au>Ye, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled Construction of Robust and Super Elastic Graphene Aerogel for High‐Efficient Formaldehyde Removal and Multifunctional Application</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>19</volume><issue>24</issue><spage>e2300234</spage><epage>n/a</epage><pages>e2300234-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT‐PEI@reduced GA (rGA) is fabricated via hydrothermal self‐assembly, pre‐frozen, and hydrazine reduction process. Introducing CNT‐PEI contributes to well‐interconnected/robust 3D network construction by connecting reduced graphene oxide (rGO) nanosheets through enhancing cross‐linking, while entangled CNT‐PEI is intercalated into rGO layers to avoid serious restacking of sheets, producing larger surface area and more formaldehyde adsorption sites. Ultralight CNT‐PEI@rGA exhibits extreme high strength (276.37 kPa), reversible compressibility at 90% strain, and structural stability, while FA adsorption capacity reached 568.41 mg g‐1, ≈3.28 times of rGA, derivable from synergistic chemical‐physical adsorption effect. Furthermore, CNT‐PEI@rGA is ground into powder for first preparing polyoxymethylene (POM)/CNT‐PEI@rGA composite, while formaldehyde emission amount is 69.63%/73.96% lower than that of POM at 60/230 °C. Moreover, CNT‐PEI@rGA presents outstanding piezoresistive‐sensing and thermal insulation properties, exhibiting high strain sensitivity, wide strain detection range, and long‐term durability.
Introducing carbon nanotube (CNT)‐polyethyleneimine (PEI) into reduced graphene oxide layers contributes to well‐interconnected/robust 3D network construction reduced graphene aerogel (rGA) through enhancing cross‐linking/support effect, simultaneously achieving exceptional strength and super‐elasticity, while entangled CNT‐PEI avoids sheets restacking, presenting significant formaldehyde removal capacity and outstanding piezoresistiv‐sensing and thermal insulation properties.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36919815</pmid><doi>10.1002/smll.202300234</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4164-6038</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-06, Vol.19 (24), p.e2300234-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2787213445 |
source | Wiley Journals |
subjects | Adsorption Aerogels Aldehydes Carbon nanotubes Compressibility enhancing mechanical strength and resilience Formaldehyde formaldehyde removal Graphene graphene aerogel (GA) Hydrazines multifunctional applications Nanotechnology Polyethyleneimine Robustness Self-assembly Structural stability Surface chemistry Thermal insulation well‐interconnected 3D network structures |
title | Self‐Assembled Construction of Robust and Super Elastic Graphene Aerogel for High‐Efficient Formaldehyde Removal and Multifunctional Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20Construction%20of%20Robust%20and%20Super%20Elastic%20Graphene%20Aerogel%20for%20High%E2%80%90Efficient%20Formaldehyde%20Removal%20and%20Multifunctional%20Application&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Wuyou&rft.date=2023-06-01&rft.volume=19&rft.issue=24&rft.spage=e2300234&rft.epage=n/a&rft.pages=e2300234-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300234&rft_dat=%3Cproquest_cross%3E2825385696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825385696&rft_id=info:pmid/36919815&rfr_iscdi=true |