Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds
Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell‐based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is spec...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2023-09, Vol.120 (9), p.2717-2724 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2724 |
---|---|
container_issue | 9 |
container_start_page | 2717 |
container_title | Biotechnology and bioengineering |
container_volume | 120 |
creator | Martorell, Lluís López‐Fernández, Alba García‐Lizarribar, Andrea Sabata, Roger Gálvez‐Martín, Patricia Samitier, Josep Vives, Joaquim |
description | Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell‐based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell‐loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel‐based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+/CD45,− 10.3% HLA‐DR,+ 100.0% CD90,+ and 99.2% CD73+/CD31− expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
Definition and preservation of critical quality attributes (CQA) is key to ensure clinical translation of three dimensional bioprinting approaches in regenerative medicine applications. In bone tissue regeneration, this is addressed by defining a “bioprintable zone,” in which major CQAs (namely, cell viability, proliferative capacity, identity, and osteogenic potency) are maintained after printing. |
doi_str_mv | 10.1002/bit.28381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2787212237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850984442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-4d9f77e1c9ca2a2647909eb1a680726723247d53ec484a68121a8fbe7ee25f333</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EoofCghdAltjAIq09zontJS23SpVgUdaW40xaV0nc-gLKG_DYOJzCAonVyDOfP439E_KSsxPOGJz2Pp-AEoo_IjvOtGwYaPaY7BhjXSP2Go7Is5Ru61GqrntKjkSnuQbJduTn14gJ43ebfVhoGKmLPntnJ3pf7OTzSm3O0fclY9rGc6UXd7POlUg5hq06nKZE_ULFe9r7cBf9knHYxsXlUv20X2lJfrmmi62NeuVmHWK4xupwdhzDNKTn5Mlop4QvHuox-fbxw9X55-byy6eL83eXjRNK8aYd9CglcqedBQtdKzXT2HPbKSahkyCglcNeoGtVW5scuFVjjxIR9qMQ4pi8OXjvYrgvmLKZfdpeYBcMJRmQSgIHELKir_9Bb0OJS93OgNozrdq2hUq9PVAuhpQijqZ-wGzjajgzWzymxmN-x1PZVw_G0s84_CX_5FGB0wPww0-4_t9kzi6uDspfNXGbXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850984442</pqid></control><display><type>article</type><title>Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Martorell, Lluís ; López‐Fernández, Alba ; García‐Lizarribar, Andrea ; Sabata, Roger ; Gálvez‐Martín, Patricia ; Samitier, Josep ; Vives, Joaquim</creator><creatorcontrib>Martorell, Lluís ; López‐Fernández, Alba ; García‐Lizarribar, Andrea ; Sabata, Roger ; Gálvez‐Martín, Patricia ; Samitier, Josep ; Vives, Joaquim</creatorcontrib><description>Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell‐based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell‐loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel‐based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+/CD45,− 10.3% HLA‐DR,+ 100.0% CD90,+ and 99.2% CD73+/CD31− expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
Definition and preservation of critical quality attributes (CQA) is key to ensure clinical translation of three dimensional bioprinting approaches in regenerative medicine applications. In bone tissue regeneration, this is addressed by defining a “bioprintable zone,” in which major CQAs (namely, cell viability, proliferative capacity, identity, and osteogenic potency) are maintained after printing.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28381</identifier><identifier>PMID: 36919270</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D bioprinting ; Biocompatibility ; Bone growth ; Bone marrow ; CD105 antigen ; CD45 antigen ; CD73 antigen ; Cell proliferation ; Cell viability ; critical quality attributes ; Differentiation (biology) ; Fibrin ; Gelatin ; human mesenchymal stromal cells ; Hyaluronic acid ; Hydrogels ; Mechanical properties ; Mesenchymal stem cells ; New technology ; osteogenic differentiation ; Polymers ; potency ; Quality management ; Regeneration ; Regeneration (physiology) ; Regenerative medicine ; Scaffolds ; Shear stress ; Stromal cells ; substances of human origin (SoHO) ; Three dimensional printing ; Tissue engineering</subject><ispartof>Biotechnology and bioengineering, 2023-09, Vol.120 (9), p.2717-2724</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-4d9f77e1c9ca2a2647909eb1a680726723247d53ec484a68121a8fbe7ee25f333</citedby><cites>FETCH-LOGICAL-c3881-4d9f77e1c9ca2a2647909eb1a680726723247d53ec484a68121a8fbe7ee25f333</cites><orcidid>0000-0001-9724-8560 ; 0000-0002-4769-4615 ; 0000-0001-9719-5235 ; 0000-0001-5072-2093 ; 0000-0002-1140-3679 ; 0000-0001-9348-4531 ; 0000-0001-6072-0294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.28381$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.28381$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36919270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martorell, Lluís</creatorcontrib><creatorcontrib>López‐Fernández, Alba</creatorcontrib><creatorcontrib>García‐Lizarribar, Andrea</creatorcontrib><creatorcontrib>Sabata, Roger</creatorcontrib><creatorcontrib>Gálvez‐Martín, Patricia</creatorcontrib><creatorcontrib>Samitier, Josep</creatorcontrib><creatorcontrib>Vives, Joaquim</creatorcontrib><title>Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell‐based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell‐loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel‐based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+/CD45,− 10.3% HLA‐DR,+ 100.0% CD90,+ and 99.2% CD73+/CD31− expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
Definition and preservation of critical quality attributes (CQA) is key to ensure clinical translation of three dimensional bioprinting approaches in regenerative medicine applications. In bone tissue regeneration, this is addressed by defining a “bioprintable zone,” in which major CQAs (namely, cell viability, proliferative capacity, identity, and osteogenic potency) are maintained after printing.</description><subject>3D bioprinting</subject><subject>Biocompatibility</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>CD105 antigen</subject><subject>CD45 antigen</subject><subject>CD73 antigen</subject><subject>Cell proliferation</subject><subject>Cell viability</subject><subject>critical quality attributes</subject><subject>Differentiation (biology)</subject><subject>Fibrin</subject><subject>Gelatin</subject><subject>human mesenchymal stromal cells</subject><subject>Hyaluronic acid</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Mesenchymal stem cells</subject><subject>New technology</subject><subject>osteogenic differentiation</subject><subject>Polymers</subject><subject>potency</subject><subject>Quality management</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Scaffolds</subject><subject>Shear stress</subject><subject>Stromal cells</subject><subject>substances of human origin (SoHO)</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kctu1TAQhi0EoofCghdAltjAIq09zontJS23SpVgUdaW40xaV0nc-gLKG_DYOJzCAonVyDOfP439E_KSsxPOGJz2Pp-AEoo_IjvOtGwYaPaY7BhjXSP2Go7Is5Ru61GqrntKjkSnuQbJduTn14gJ43ebfVhoGKmLPntnJ3pf7OTzSm3O0fclY9rGc6UXd7POlUg5hq06nKZE_ULFe9r7cBf9knHYxsXlUv20X2lJfrmmi62NeuVmHWK4xupwdhzDNKTn5Mlop4QvHuox-fbxw9X55-byy6eL83eXjRNK8aYd9CglcqedBQtdKzXT2HPbKSahkyCglcNeoGtVW5scuFVjjxIR9qMQ4pi8OXjvYrgvmLKZfdpeYBcMJRmQSgIHELKir_9Bb0OJS93OgNozrdq2hUq9PVAuhpQijqZ-wGzjajgzWzymxmN-x1PZVw_G0s84_CX_5FGB0wPww0-4_t9kzi6uDspfNXGbXg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Martorell, Lluís</creator><creator>López‐Fernández, Alba</creator><creator>García‐Lizarribar, Andrea</creator><creator>Sabata, Roger</creator><creator>Gálvez‐Martín, Patricia</creator><creator>Samitier, Josep</creator><creator>Vives, Joaquim</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9724-8560</orcidid><orcidid>https://orcid.org/0000-0002-4769-4615</orcidid><orcidid>https://orcid.org/0000-0001-9719-5235</orcidid><orcidid>https://orcid.org/0000-0001-5072-2093</orcidid><orcidid>https://orcid.org/0000-0002-1140-3679</orcidid><orcidid>https://orcid.org/0000-0001-9348-4531</orcidid><orcidid>https://orcid.org/0000-0001-6072-0294</orcidid></search><sort><creationdate>202309</creationdate><title>Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds</title><author>Martorell, Lluís ; López‐Fernández, Alba ; García‐Lizarribar, Andrea ; Sabata, Roger ; Gálvez‐Martín, Patricia ; Samitier, Josep ; Vives, Joaquim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-4d9f77e1c9ca2a2647909eb1a680726723247d53ec484a68121a8fbe7ee25f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D bioprinting</topic><topic>Biocompatibility</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>CD105 antigen</topic><topic>CD45 antigen</topic><topic>CD73 antigen</topic><topic>Cell proliferation</topic><topic>Cell viability</topic><topic>critical quality attributes</topic><topic>Differentiation (biology)</topic><topic>Fibrin</topic><topic>Gelatin</topic><topic>human mesenchymal stromal cells</topic><topic>Hyaluronic acid</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Mesenchymal stem cells</topic><topic>New technology</topic><topic>osteogenic differentiation</topic><topic>Polymers</topic><topic>potency</topic><topic>Quality management</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Scaffolds</topic><topic>Shear stress</topic><topic>Stromal cells</topic><topic>substances of human origin (SoHO)</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martorell, Lluís</creatorcontrib><creatorcontrib>López‐Fernández, Alba</creatorcontrib><creatorcontrib>García‐Lizarribar, Andrea</creatorcontrib><creatorcontrib>Sabata, Roger</creatorcontrib><creatorcontrib>Gálvez‐Martín, Patricia</creatorcontrib><creatorcontrib>Samitier, Josep</creatorcontrib><creatorcontrib>Vives, Joaquim</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martorell, Lluís</au><au>López‐Fernández, Alba</au><au>García‐Lizarribar, Andrea</au><au>Sabata, Roger</au><au>Gálvez‐Martín, Patricia</au><au>Samitier, Josep</au><au>Vives, Joaquim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2023-09</date><risdate>2023</risdate><volume>120</volume><issue>9</issue><spage>2717</spage><epage>2724</epage><pages>2717-2724</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell‐based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell‐loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel‐based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+/CD45,− 10.3% HLA‐DR,+ 100.0% CD90,+ and 99.2% CD73+/CD31− expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
Definition and preservation of critical quality attributes (CQA) is key to ensure clinical translation of three dimensional bioprinting approaches in regenerative medicine applications. In bone tissue regeneration, this is addressed by defining a “bioprintable zone,” in which major CQAs (namely, cell viability, proliferative capacity, identity, and osteogenic potency) are maintained after printing.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36919270</pmid><doi>10.1002/bit.28381</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9724-8560</orcidid><orcidid>https://orcid.org/0000-0002-4769-4615</orcidid><orcidid>https://orcid.org/0000-0001-9719-5235</orcidid><orcidid>https://orcid.org/0000-0001-5072-2093</orcidid><orcidid>https://orcid.org/0000-0002-1140-3679</orcidid><orcidid>https://orcid.org/0000-0001-9348-4531</orcidid><orcidid>https://orcid.org/0000-0001-6072-0294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2023-09, Vol.120 (9), p.2717-2724 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2787212237 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D bioprinting Biocompatibility Bone growth Bone marrow CD105 antigen CD45 antigen CD73 antigen Cell proliferation Cell viability critical quality attributes Differentiation (biology) Fibrin Gelatin human mesenchymal stromal cells Hyaluronic acid Hydrogels Mechanical properties Mesenchymal stem cells New technology osteogenic differentiation Polymers potency Quality management Regeneration Regeneration (physiology) Regenerative medicine Scaffolds Shear stress Stromal cells substances of human origin (SoHO) Three dimensional printing Tissue engineering |
title | Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preservation%20of%20critical%20quality%20attributes%20of%20mesenchymal%20stromal%20cells%20in%203D%20bioprinted%20structures%20by%20using%20natural%20hydrogel%20scaffolds&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Martorell,%20Llu%C3%ADs&rft.date=2023-09&rft.volume=120&rft.issue=9&rft.spage=2717&rft.epage=2724&rft.pages=2717-2724&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28381&rft_dat=%3Cproquest_cross%3E2850984442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850984442&rft_id=info:pmid/36919270&rfr_iscdi=true |