Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern

Mixing and circulation of monosized particles in laboratory-scale tapered spouted beds have been characterized experimentally by measuring non-invasively the 3-D trajectory of a single tracer via a radioactive velocimetry technique. Processing the obtained Lagrangian trajectory allowed determination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2003-04, Vol.58 (8), p.1497-1507
Hauptverfasser: Larachi, Faı̈çal, Grandjean, Bernard P.A, Chaouki, Jamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1507
container_issue 8
container_start_page 1497
container_title Chemical engineering science
container_volume 58
creator Larachi, Faı̈çal
Grandjean, Bernard P.A
Chaouki, Jamal
description Mixing and circulation of monosized particles in laboratory-scale tapered spouted beds have been characterized experimentally by measuring non-invasively the 3-D trajectory of a single tracer via a radioactive velocimetry technique. Processing the obtained Lagrangian trajectory allowed determination of the mixing dynamics in the longitudinal, radial and circumferential directions, of the return length and return time distributions, and of the mean Eulerian flow fields. A conceptual solids flow structure has been delineated. A four-zone 2-D axisymmetrical Monte Carlo model has been developed for emulating the elementary steps in play in the longitudinal mixing, i.e., the direction of slowest mixing, and in the return (or circulation) time and length of the solids phase. The four-zone solids flow structure is viewed as: (i) a spout region with a constant upward particle velocity, (ii) an annulus region above the conical base with a downward velocity radial profile, (iii) an annulus region within the conical base where the linear velocity, considered to be parallel to the cone wall, is equal to that of the incoming particles, (iv) a fountain in which the particle movement is characterized by the particle residence time, an exiting radius, and an average fountain height. The model proved successful in restoring the measured return time and return length distributions, and the mixing response curves.
doi_str_mv 10.1016/S0009-2509(02)00676-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27868735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250902006760</els_id><sourcerecordid>27868735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e39c3d1f78ca67a328e85dfc43514375c823a6961045ea5a26da8535daaf24423</originalsourceid><addsrcrecordid>eNqFkEtvUzEQRq0KpIbCT6jkDQgWF_z2DRuEIlqQWrFoWVtTe27r4tjBdij8e26a8tixGo10vnkcQo45e80ZN28uGGPLQWi2fMnEK8aMNQM7IAs-WjkoxfQjsviDHJInrd3OrbWcLcjdefwR8zWFHKiP1W8T9FgyLRNtJcXQaMy0bcq2Y6BXGNpbuoHao09IewX_9Xf4vOSOdAU1FYrrf8b0G6TXtbRGp1Tu5nTvWPNT8niC1PDZQz0iX04-XK4-DmefTz-t3p8NXpqxDyiXXgY-2dGDsSDFiKMOk1dScyWt9qOQYJaGM6URNAgTYNRSB4BJKCXkEXmxn7up5dsWW3fr2DymBBnLtjlhRzNr0jOo96Df3Vpxcpsa11B_Os7cTrO71-x2Dh0T7l6zY3Pu-cMCaB7SVCH72P6GldHWKDtz7_Yczt9-j1hd8xGzxxAr-u5Cif_Z9Aum6ZJx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27868735</pqid></control><display><type>article</type><title>Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern</title><source>Elsevier ScienceDirect Journals</source><creator>Larachi, Faı̈çal ; Grandjean, Bernard P.A ; Chaouki, Jamal</creator><creatorcontrib>Larachi, Faı̈çal ; Grandjean, Bernard P.A ; Chaouki, Jamal</creatorcontrib><description>Mixing and circulation of monosized particles in laboratory-scale tapered spouted beds have been characterized experimentally by measuring non-invasively the 3-D trajectory of a single tracer via a radioactive velocimetry technique. Processing the obtained Lagrangian trajectory allowed determination of the mixing dynamics in the longitudinal, radial and circumferential directions, of the return length and return time distributions, and of the mean Eulerian flow fields. A conceptual solids flow structure has been delineated. A four-zone 2-D axisymmetrical Monte Carlo model has been developed for emulating the elementary steps in play in the longitudinal mixing, i.e., the direction of slowest mixing, and in the return (or circulation) time and length of the solids phase. The four-zone solids flow structure is viewed as: (i) a spout region with a constant upward particle velocity, (ii) an annulus region above the conical base with a downward velocity radial profile, (iii) an annulus region within the conical base where the linear velocity, considered to be parallel to the cone wall, is equal to that of the incoming particles, (iv) a fountain in which the particle movement is characterized by the particle residence time, an exiting radius, and an average fountain height. The model proved successful in restoring the measured return time and return length distributions, and the mixing response curves.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(02)00676-0</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Fluidization ; Particle circulation length and time ; Particle tracking ; Solids mixing ; Spouted bed ; Stochastic modeling</subject><ispartof>Chemical engineering science, 2003-04, Vol.58 (8), p.1497-1507</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e39c3d1f78ca67a328e85dfc43514375c823a6961045ea5a26da8535daaf24423</citedby><cites>FETCH-LOGICAL-c368t-e39c3d1f78ca67a328e85dfc43514375c823a6961045ea5a26da8535daaf24423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(02)00676-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14657647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Larachi, Faı̈çal</creatorcontrib><creatorcontrib>Grandjean, Bernard P.A</creatorcontrib><creatorcontrib>Chaouki, Jamal</creatorcontrib><title>Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern</title><title>Chemical engineering science</title><description>Mixing and circulation of monosized particles in laboratory-scale tapered spouted beds have been characterized experimentally by measuring non-invasively the 3-D trajectory of a single tracer via a radioactive velocimetry technique. Processing the obtained Lagrangian trajectory allowed determination of the mixing dynamics in the longitudinal, radial and circumferential directions, of the return length and return time distributions, and of the mean Eulerian flow fields. A conceptual solids flow structure has been delineated. A four-zone 2-D axisymmetrical Monte Carlo model has been developed for emulating the elementary steps in play in the longitudinal mixing, i.e., the direction of slowest mixing, and in the return (or circulation) time and length of the solids phase. The four-zone solids flow structure is viewed as: (i) a spout region with a constant upward particle velocity, (ii) an annulus region above the conical base with a downward velocity radial profile, (iii) an annulus region within the conical base where the linear velocity, considered to be parallel to the cone wall, is equal to that of the incoming particles, (iv) a fountain in which the particle movement is characterized by the particle residence time, an exiting radius, and an average fountain height. The model proved successful in restoring the measured return time and return length distributions, and the mixing response curves.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Particle circulation length and time</subject><subject>Particle tracking</subject><subject>Solids mixing</subject><subject>Spouted bed</subject><subject>Stochastic modeling</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvUzEQRq0KpIbCT6jkDQgWF_z2DRuEIlqQWrFoWVtTe27r4tjBdij8e26a8tixGo10vnkcQo45e80ZN28uGGPLQWi2fMnEK8aMNQM7IAs-WjkoxfQjsviDHJInrd3OrbWcLcjdefwR8zWFHKiP1W8T9FgyLRNtJcXQaMy0bcq2Y6BXGNpbuoHao09IewX_9Xf4vOSOdAU1FYrrf8b0G6TXtbRGp1Tu5nTvWPNT8niC1PDZQz0iX04-XK4-DmefTz-t3p8NXpqxDyiXXgY-2dGDsSDFiKMOk1dScyWt9qOQYJaGM6URNAgTYNRSB4BJKCXkEXmxn7up5dsWW3fr2DymBBnLtjlhRzNr0jOo96Df3Vpxcpsa11B_Os7cTrO71-x2Dh0T7l6zY3Pu-cMCaB7SVCH72P6GldHWKDtz7_Yczt9-j1hd8xGzxxAr-u5Cif_Z9Aum6ZJx</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Larachi, Faı̈çal</creator><creator>Grandjean, Bernard P.A</creator><creator>Chaouki, Jamal</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030401</creationdate><title>Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern</title><author>Larachi, Faı̈çal ; Grandjean, Bernard P.A ; Chaouki, Jamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e39c3d1f78ca67a328e85dfc43514375c823a6961045ea5a26da8535daaf24423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Particle circulation length and time</topic><topic>Particle tracking</topic><topic>Solids mixing</topic><topic>Spouted bed</topic><topic>Stochastic modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larachi, Faı̈çal</creatorcontrib><creatorcontrib>Grandjean, Bernard P.A</creatorcontrib><creatorcontrib>Chaouki, Jamal</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larachi, Faı̈çal</au><au>Grandjean, Bernard P.A</au><au>Chaouki, Jamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern</atitle><jtitle>Chemical engineering science</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>58</volume><issue>8</issue><spage>1497</spage><epage>1507</epage><pages>1497-1507</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Mixing and circulation of monosized particles in laboratory-scale tapered spouted beds have been characterized experimentally by measuring non-invasively the 3-D trajectory of a single tracer via a radioactive velocimetry technique. Processing the obtained Lagrangian trajectory allowed determination of the mixing dynamics in the longitudinal, radial and circumferential directions, of the return length and return time distributions, and of the mean Eulerian flow fields. A conceptual solids flow structure has been delineated. A four-zone 2-D axisymmetrical Monte Carlo model has been developed for emulating the elementary steps in play in the longitudinal mixing, i.e., the direction of slowest mixing, and in the return (or circulation) time and length of the solids phase. The four-zone solids flow structure is viewed as: (i) a spout region with a constant upward particle velocity, (ii) an annulus region above the conical base with a downward velocity radial profile, (iii) an annulus region within the conical base where the linear velocity, considered to be parallel to the cone wall, is equal to that of the incoming particles, (iv) a fountain in which the particle movement is characterized by the particle residence time, an exiting radius, and an average fountain height. The model proved successful in restoring the measured return time and return length distributions, and the mixing response curves.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(02)00676-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2003-04, Vol.58 (8), p.1497-1507
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_27868735
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Fluidization
Particle circulation length and time
Particle tracking
Solids mixing
Spouted bed
Stochastic modeling
title Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixing%20and%20circulation%20of%20solids%20in%20spouted%20beds:%20particle%20tracking%20and%20Monte%20Carlo%20emulation%20of%20the%20gross%20flow%20pattern&rft.jtitle=Chemical%20engineering%20science&rft.au=Larachi,%20Fa%C4%B1%CC%88%C3%A7al&rft.date=2003-04-01&rft.volume=58&rft.issue=8&rft.spage=1497&rft.epage=1507&rft.pages=1497-1507&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(02)00676-0&rft_dat=%3Cproquest_cross%3E27868735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27868735&rft_id=info:pmid/&rft_els_id=S0009250902006760&rfr_iscdi=true