Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process

The transition metal oxide (TMO) SrCoO3−δ family with rich structural diversity has been widely studied in the phase transition and energy application fields. We report the multiple-phase structure evolution, phase transitions during sintering, and electrical transport of A-site doped Sr4−xYxCo4O12−...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2023-04, Vol.52 (14), p.4398-4406
Hauptverfasser: Song, Hongyuan, Liu, Bin, Zeng, Jinhua, Huo, Guangpeng, Chen, Liangwei, Wang, Jianlu, Yu, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4406
container_issue 14
container_start_page 4398
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 52
creator Song, Hongyuan
Liu, Bin
Zeng, Jinhua
Huo, Guangpeng
Chen, Liangwei
Wang, Jianlu
Yu, Lan
description The transition metal oxide (TMO) SrCoO3−δ family with rich structural diversity has been widely studied in the phase transition and energy application fields. We report the multiple-phase structure evolution, phase transitions during sintering, and electrical transport of A-site doped Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics. Sr6Co5O15 (x = 0) adopts a hexagonal structure (H), Sr4−xYxCo4O12−δ (x = 0.2–0.4) ceramics adopts a cubic perovskite (CP) structure, and Sr4−xYxCo4O10.5+δ′ (x = 0.8–1.0) ceramics adopts an ordered-tetragonal (OT) structure; moreover, their phase transitions during the sintering processing of samples are systematically investigated. Combining the thermal analysis and X-ray diffraction results, the exothermic peak and weight gain of Sr3YCo4O10.5 (x = 1.0, T) at 1042 °C are considered to correspond to an ordered phase transition (T → OT) occurring. Finally, a systematic phase schema of the Sr4−xYxCo4O12−δ (x = 0–1.0) state dependence on the Y content and sintering temperature is obtained. The high-energy Y–O bond stabilizes the high-temperature CP structure (x = 0.2–0.4) and induces a structural evolution from the CP to OT structure (x = 0.8–1.0). In addition, all Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics show semiconductive electrical transport behavior. Sr6Co5O15 (H) with a one-dimensional chain structure has the highest resistivity, while Sr3.8Y0.2Co4O12−δ (CP) with a three-dimensional corner-sharing structure exhibits the lowest resistivity, and Sr4−xYxCo4O12−δ (x = 0.2–1.0) ceramics show an increasing tendency in resistivity due to the hole carrier Co4+ converting to Co3+. We studied multiple-phase evolution and ordered phase transition in Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics through Y–O bonding.
doi_str_mv 10.1039/d3dt00294b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2786813434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794531792</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-165a8cc3ee667db1f3062b432ec8c7acf8f94903d64f1c69e330cba57984a9b3</originalsourceid><addsrcrecordid>eNpdkL1OwzAQxy0EEqWw8ASWWMqQ4q84MRIDqviSihjowlQ5zkWkMnGwE9SBgZEZXoXn4CH6JFgtYkA33H_43e9Oh9AhJWNKuDopedkRwpQottCAiixLFONi-y8zuYv2QlhEhpGUDdDrbW-7urWQtI86AIYXZ_uudg3WTYnBgul8bbTFnddNaJ3vsKvwvRer94_lw3LixB1lMX9_4dESn2GyevukY3J8Guex8yV4KPFGvTbUa3frnYEQ9tFOpW2Ag98-RLPLi9nkOpneXd1MzqdJy6jsEipTnRvDAaTMyoJWnEhWCM7A5CbTpsorJRThpRQVNVIB58QUOs1ULrQq-BCNNtq49rmH0M2f6mDAWt2A68OcZbnMKRexhujoH7pwvW_icZFSIuU0iw_9AW8bcDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794531792</pqid></control><display><type>article</type><title>Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Song, Hongyuan ; Liu, Bin ; Zeng, Jinhua ; Huo, Guangpeng ; Chen, Liangwei ; Wang, Jianlu ; Yu, Lan</creator><creatorcontrib>Song, Hongyuan ; Liu, Bin ; Zeng, Jinhua ; Huo, Guangpeng ; Chen, Liangwei ; Wang, Jianlu ; Yu, Lan</creatorcontrib><description>The transition metal oxide (TMO) SrCoO3−δ family with rich structural diversity has been widely studied in the phase transition and energy application fields. We report the multiple-phase structure evolution, phase transitions during sintering, and electrical transport of A-site doped Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics. Sr6Co5O15 (x = 0) adopts a hexagonal structure (H), Sr4−xYxCo4O12−δ (x = 0.2–0.4) ceramics adopts a cubic perovskite (CP) structure, and Sr4−xYxCo4O10.5+δ′ (x = 0.8–1.0) ceramics adopts an ordered-tetragonal (OT) structure; moreover, their phase transitions during the sintering processing of samples are systematically investigated. Combining the thermal analysis and X-ray diffraction results, the exothermic peak and weight gain of Sr3YCo4O10.5 (x = 1.0, T) at 1042 °C are considered to correspond to an ordered phase transition (T → OT) occurring. Finally, a systematic phase schema of the Sr4−xYxCo4O12−δ (x = 0–1.0) state dependence on the Y content and sintering temperature is obtained. The high-energy Y–O bond stabilizes the high-temperature CP structure (x = 0.2–0.4) and induces a structural evolution from the CP to OT structure (x = 0.8–1.0). In addition, all Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics show semiconductive electrical transport behavior. Sr6Co5O15 (H) with a one-dimensional chain structure has the highest resistivity, while Sr3.8Y0.2Co4O12−δ (CP) with a three-dimensional corner-sharing structure exhibits the lowest resistivity, and Sr4−xYxCo4O12−δ (x = 0.2–1.0) ceramics show an increasing tendency in resistivity due to the hole carrier Co4+ converting to Co3+. We studied multiple-phase evolution and ordered phase transition in Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics through Y–O bonding.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt00294b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ceramics ; Electrical resistivity ; Evolution ; High temperature ; Perovskites ; Phase transitions ; Sintering ; Solid phases ; Thermal analysis ; Transition metal oxides ; Transport phenomena</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-04, Vol.52 (14), p.4398-4406</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Hongyuan</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Zeng, Jinhua</creatorcontrib><creatorcontrib>Huo, Guangpeng</creatorcontrib><creatorcontrib>Chen, Liangwei</creatorcontrib><creatorcontrib>Wang, Jianlu</creatorcontrib><creatorcontrib>Yu, Lan</creatorcontrib><title>Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>The transition metal oxide (TMO) SrCoO3−δ family with rich structural diversity has been widely studied in the phase transition and energy application fields. We report the multiple-phase structure evolution, phase transitions during sintering, and electrical transport of A-site doped Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics. Sr6Co5O15 (x = 0) adopts a hexagonal structure (H), Sr4−xYxCo4O12−δ (x = 0.2–0.4) ceramics adopts a cubic perovskite (CP) structure, and Sr4−xYxCo4O10.5+δ′ (x = 0.8–1.0) ceramics adopts an ordered-tetragonal (OT) structure; moreover, their phase transitions during the sintering processing of samples are systematically investigated. Combining the thermal analysis and X-ray diffraction results, the exothermic peak and weight gain of Sr3YCo4O10.5 (x = 1.0, T) at 1042 °C are considered to correspond to an ordered phase transition (T → OT) occurring. Finally, a systematic phase schema of the Sr4−xYxCo4O12−δ (x = 0–1.0) state dependence on the Y content and sintering temperature is obtained. The high-energy Y–O bond stabilizes the high-temperature CP structure (x = 0.2–0.4) and induces a structural evolution from the CP to OT structure (x = 0.8–1.0). In addition, all Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics show semiconductive electrical transport behavior. Sr6Co5O15 (H) with a one-dimensional chain structure has the highest resistivity, while Sr3.8Y0.2Co4O12−δ (CP) with a three-dimensional corner-sharing structure exhibits the lowest resistivity, and Sr4−xYxCo4O12−δ (x = 0.2–1.0) ceramics show an increasing tendency in resistivity due to the hole carrier Co4+ converting to Co3+. We studied multiple-phase evolution and ordered phase transition in Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics through Y–O bonding.</description><subject>Ceramics</subject><subject>Electrical resistivity</subject><subject>Evolution</subject><subject>High temperature</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Sintering</subject><subject>Solid phases</subject><subject>Thermal analysis</subject><subject>Transition metal oxides</subject><subject>Transport phenomena</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAQxy0EEqWw8ASWWMqQ4q84MRIDqviSihjowlQ5zkWkMnGwE9SBgZEZXoXn4CH6JFgtYkA33H_43e9Oh9AhJWNKuDopedkRwpQottCAiixLFONi-y8zuYv2QlhEhpGUDdDrbW-7urWQtI86AIYXZ_uudg3WTYnBgul8bbTFnddNaJ3vsKvwvRer94_lw3LixB1lMX9_4dESn2GyevukY3J8Guex8yV4KPFGvTbUa3frnYEQ9tFOpW2Ag98-RLPLi9nkOpneXd1MzqdJy6jsEipTnRvDAaTMyoJWnEhWCM7A5CbTpsorJRThpRQVNVIB58QUOs1ULrQq-BCNNtq49rmH0M2f6mDAWt2A68OcZbnMKRexhujoH7pwvW_icZFSIuU0iw_9AW8bcDo</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Song, Hongyuan</creator><creator>Liu, Bin</creator><creator>Zeng, Jinhua</creator><creator>Huo, Guangpeng</creator><creator>Chen, Liangwei</creator><creator>Wang, Jianlu</creator><creator>Yu, Lan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230404</creationdate><title>Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process</title><author>Song, Hongyuan ; Liu, Bin ; Zeng, Jinhua ; Huo, Guangpeng ; Chen, Liangwei ; Wang, Jianlu ; Yu, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-165a8cc3ee667db1f3062b432ec8c7acf8f94903d64f1c69e330cba57984a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>Electrical resistivity</topic><topic>Evolution</topic><topic>High temperature</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Sintering</topic><topic>Solid phases</topic><topic>Thermal analysis</topic><topic>Transition metal oxides</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Hongyuan</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Zeng, Jinhua</creatorcontrib><creatorcontrib>Huo, Guangpeng</creatorcontrib><creatorcontrib>Chen, Liangwei</creatorcontrib><creatorcontrib>Wang, Jianlu</creatorcontrib><creatorcontrib>Yu, Lan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Hongyuan</au><au>Liu, Bin</au><au>Zeng, Jinhua</au><au>Huo, Guangpeng</au><au>Chen, Liangwei</au><au>Wang, Jianlu</au><au>Yu, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2023-04-04</date><risdate>2023</risdate><volume>52</volume><issue>14</issue><spage>4398</spage><epage>4406</epage><pages>4398-4406</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>The transition metal oxide (TMO) SrCoO3−δ family with rich structural diversity has been widely studied in the phase transition and energy application fields. We report the multiple-phase structure evolution, phase transitions during sintering, and electrical transport of A-site doped Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics. Sr6Co5O15 (x = 0) adopts a hexagonal structure (H), Sr4−xYxCo4O12−δ (x = 0.2–0.4) ceramics adopts a cubic perovskite (CP) structure, and Sr4−xYxCo4O10.5+δ′ (x = 0.8–1.0) ceramics adopts an ordered-tetragonal (OT) structure; moreover, their phase transitions during the sintering processing of samples are systematically investigated. Combining the thermal analysis and X-ray diffraction results, the exothermic peak and weight gain of Sr3YCo4O10.5 (x = 1.0, T) at 1042 °C are considered to correspond to an ordered phase transition (T → OT) occurring. Finally, a systematic phase schema of the Sr4−xYxCo4O12−δ (x = 0–1.0) state dependence on the Y content and sintering temperature is obtained. The high-energy Y–O bond stabilizes the high-temperature CP structure (x = 0.2–0.4) and induces a structural evolution from the CP to OT structure (x = 0.8–1.0). In addition, all Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics show semiconductive electrical transport behavior. Sr6Co5O15 (H) with a one-dimensional chain structure has the highest resistivity, while Sr3.8Y0.2Co4O12−δ (CP) with a three-dimensional corner-sharing structure exhibits the lowest resistivity, and Sr4−xYxCo4O12−δ (x = 0.2–1.0) ceramics show an increasing tendency in resistivity due to the hole carrier Co4+ converting to Co3+. We studied multiple-phase evolution and ordered phase transition in Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics through Y–O bonding.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3dt00294b</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2023-04, Vol.52 (14), p.4398-4406
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2786813434
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Ceramics
Electrical resistivity
Evolution
High temperature
Perovskites
Phase transitions
Sintering
Solid phases
Thermal analysis
Transition metal oxides
Transport phenomena
title Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-phase%20evolution%20and%20electrical%20transport%20of%20Sr4%E2%88%92xYxCo4O12%E2%88%92%CE%B4%20(x%20=%200%E2%80%931.0):%20an%20ordered%20phase%20transition%20process&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Song,%20Hongyuan&rft.date=2023-04-04&rft.volume=52&rft.issue=14&rft.spage=4398&rft.epage=4406&rft.pages=4398-4406&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt00294b&rft_dat=%3Cproquest%3E2794531792%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794531792&rft_id=info:pmid/&rfr_iscdi=true