TEINet: a deep learning framework for prediction of TCR–epitope binding specificity

Abstract The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR) recognition on the antigens. Recent experimental advances have enabled the generation of a large amount of TCR data and their cognate antigenic targets, allowing machine learning models to predict the bin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2023-03, Vol.24 (2)
Hauptverfasser: Jiang, Yuepeng, Huo, Miaozhe, Cheng Li, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Briefings in bioinformatics
container_volume 24
creator Jiang, Yuepeng
Huo, Miaozhe
Cheng Li, Shuai
description Abstract The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR) recognition on the antigens. Recent experimental advances have enabled the generation of a large amount of TCR data and their cognate antigenic targets, allowing machine learning models to predict the binding specificity of TCRs. In this work, we present TEINet, a deep learning framework that utilizes transfer learning to address this prediction problem. TEINet employs two separately pretrained encoders to transform TCR and epitope sequences into numerical vectors, which are subsequently fed into a fully connected neural network to predict their binding specificities. A major challenge for binding specificity prediction is the lack of a unified approach to sampling negative data. Here, we first assess the current negative sampling approaches comprehensively and suggest that the Unified Epitope is the most suitable one. Subsequently, we compare TEINet with three baseline methods and observe that TEINet achieves an average AUROC of 0.760, which outperforms baseline methods by 6.4–26%. Furthermore, we investigate the impacts of the pretraining step and notice that excessive pretraining may lower its transferability to the final prediction task. Our results and analysis show that TEINet can make an accurate prediction using only the TCR sequence (CDR3$\beta $) and the epitope sequence, providing novel insights to understand the interactions between TCRs and epitopes.
doi_str_mv 10.1093/bib/bbad086
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2786511483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbad086</oup_id><sourcerecordid>3049109824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-da4a51c84b1947baaf5322e3a18c5c350d9f4e1714c62c2eb18c5e6b76f4d7523</originalsourceid><addsrcrecordid>eNp9kM1qGzEURkVJqR23q-6LIBACZWJp9DvZBZOkAZNCsdeDpLkqSu3RVJohZJd3yBvmSTLGbhZdZHUvl_N9XA5CXyk5p6Ricxvs3FrTEC0_oCnlShWcCH6026UqBJdsgo5zviekJErTT2jCZEWUFHqK1qur2zvoL7DBDUCHN2BSG9rf2CezhYeY_mAfE-4SNMH1IbY4erxa_Hp5eoYu9LEDbEPb7BK5Axd8cKF__Iw-erPJ8OUwZ2h9fbVa_CiWP29uF5fLwjEt-qIx3AjqNLe04soa4wUrS2CGaiccE6SpPAeqKHeydCXY3R2kVdLzRomSzdDZvrdL8e8Aua-3ITvYbEwLcch1qbQUlHLNRvTkP_Q-Dqkdv6sZ4dVoUpd8pL7vKZdizgl83aWwNemxpqTe2a5H2_XB9kh_O3QOdgvNG_tP7wic7oE4dO82vQLqZ4iI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049109824</pqid></control><display><type>article</type><title>TEINet: a deep learning framework for prediction of TCR–epitope binding specificity</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Jiang, Yuepeng ; Huo, Miaozhe ; Cheng Li, Shuai</creator><creatorcontrib>Jiang, Yuepeng ; Huo, Miaozhe ; Cheng Li, Shuai</creatorcontrib><description>Abstract The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR) recognition on the antigens. Recent experimental advances have enabled the generation of a large amount of TCR data and their cognate antigenic targets, allowing machine learning models to predict the binding specificity of TCRs. In this work, we present TEINet, a deep learning framework that utilizes transfer learning to address this prediction problem. TEINet employs two separately pretrained encoders to transform TCR and epitope sequences into numerical vectors, which are subsequently fed into a fully connected neural network to predict their binding specificities. A major challenge for binding specificity prediction is the lack of a unified approach to sampling negative data. Here, we first assess the current negative sampling approaches comprehensively and suggest that the Unified Epitope is the most suitable one. Subsequently, we compare TEINet with three baseline methods and observe that TEINet achieves an average AUROC of 0.760, which outperforms baseline methods by 6.4–26%. Furthermore, we investigate the impacts of the pretraining step and notice that excessive pretraining may lower its transferability to the final prediction task. Our results and analysis show that TEINet can make an accurate prediction using only the TCR sequence (CDR3$\beta $) and the epitope sequence, providing novel insights to understand the interactions between TCRs and epitopes.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbad086</identifier><identifier>PMID: 36907658</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adaptive immunity ; Antigens ; Binding ; Complementarity-determining region 3 ; Deep Learning ; Epitopes ; Epitopes, T-Lymphocyte ; Immune response ; Lymphocytes T ; Machine learning ; Neural networks ; Predictions ; Protein Binding ; Receptors, Antigen, T-Cell ; Sampling ; T cell receptors ; Transfer learning</subject><ispartof>Briefings in bioinformatics, 2023-03, Vol.24 (2)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-da4a51c84b1947baaf5322e3a18c5c350d9f4e1714c62c2eb18c5e6b76f4d7523</citedby><cites>FETCH-LOGICAL-c385t-da4a51c84b1947baaf5322e3a18c5c350d9f4e1714c62c2eb18c5e6b76f4d7523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbad086$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36907658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yuepeng</creatorcontrib><creatorcontrib>Huo, Miaozhe</creatorcontrib><creatorcontrib>Cheng Li, Shuai</creatorcontrib><title>TEINet: a deep learning framework for prediction of TCR–epitope binding specificity</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR) recognition on the antigens. Recent experimental advances have enabled the generation of a large amount of TCR data and their cognate antigenic targets, allowing machine learning models to predict the binding specificity of TCRs. In this work, we present TEINet, a deep learning framework that utilizes transfer learning to address this prediction problem. TEINet employs two separately pretrained encoders to transform TCR and epitope sequences into numerical vectors, which are subsequently fed into a fully connected neural network to predict their binding specificities. A major challenge for binding specificity prediction is the lack of a unified approach to sampling negative data. Here, we first assess the current negative sampling approaches comprehensively and suggest that the Unified Epitope is the most suitable one. Subsequently, we compare TEINet with three baseline methods and observe that TEINet achieves an average AUROC of 0.760, which outperforms baseline methods by 6.4–26%. Furthermore, we investigate the impacts of the pretraining step and notice that excessive pretraining may lower its transferability to the final prediction task. Our results and analysis show that TEINet can make an accurate prediction using only the TCR sequence (CDR3$\beta $) and the epitope sequence, providing novel insights to understand the interactions between TCRs and epitopes.</description><subject>Adaptive immunity</subject><subject>Antigens</subject><subject>Binding</subject><subject>Complementarity-determining region 3</subject><subject>Deep Learning</subject><subject>Epitopes</subject><subject>Epitopes, T-Lymphocyte</subject><subject>Immune response</subject><subject>Lymphocytes T</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Protein Binding</subject><subject>Receptors, Antigen, T-Cell</subject><subject>Sampling</subject><subject>T cell receptors</subject><subject>Transfer learning</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1qGzEURkVJqR23q-6LIBACZWJp9DvZBZOkAZNCsdeDpLkqSu3RVJohZJd3yBvmSTLGbhZdZHUvl_N9XA5CXyk5p6Ricxvs3FrTEC0_oCnlShWcCH6026UqBJdsgo5zviekJErTT2jCZEWUFHqK1qur2zvoL7DBDUCHN2BSG9rf2CezhYeY_mAfE-4SNMH1IbY4erxa_Hp5eoYu9LEDbEPb7BK5Axd8cKF__Iw-erPJ8OUwZ2h9fbVa_CiWP29uF5fLwjEt-qIx3AjqNLe04soa4wUrS2CGaiccE6SpPAeqKHeydCXY3R2kVdLzRomSzdDZvrdL8e8Aua-3ITvYbEwLcch1qbQUlHLNRvTkP_Q-Dqkdv6sZ4dVoUpd8pL7vKZdizgl83aWwNemxpqTe2a5H2_XB9kh_O3QOdgvNG_tP7wic7oE4dO82vQLqZ4iI</recordid><startdate>20230319</startdate><enddate>20230319</enddate><creator>Jiang, Yuepeng</creator><creator>Huo, Miaozhe</creator><creator>Cheng Li, Shuai</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20230319</creationdate><title>TEINet: a deep learning framework for prediction of TCR–epitope binding specificity</title><author>Jiang, Yuepeng ; Huo, Miaozhe ; Cheng Li, Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-da4a51c84b1947baaf5322e3a18c5c350d9f4e1714c62c2eb18c5e6b76f4d7523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive immunity</topic><topic>Antigens</topic><topic>Binding</topic><topic>Complementarity-determining region 3</topic><topic>Deep Learning</topic><topic>Epitopes</topic><topic>Epitopes, T-Lymphocyte</topic><topic>Immune response</topic><topic>Lymphocytes T</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Protein Binding</topic><topic>Receptors, Antigen, T-Cell</topic><topic>Sampling</topic><topic>T cell receptors</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yuepeng</creatorcontrib><creatorcontrib>Huo, Miaozhe</creatorcontrib><creatorcontrib>Cheng Li, Shuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Yuepeng</au><au>Huo, Miaozhe</au><au>Cheng Li, Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TEINet: a deep learning framework for prediction of TCR–epitope binding specificity</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2023-03-19</date><risdate>2023</risdate><volume>24</volume><issue>2</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR) recognition on the antigens. Recent experimental advances have enabled the generation of a large amount of TCR data and their cognate antigenic targets, allowing machine learning models to predict the binding specificity of TCRs. In this work, we present TEINet, a deep learning framework that utilizes transfer learning to address this prediction problem. TEINet employs two separately pretrained encoders to transform TCR and epitope sequences into numerical vectors, which are subsequently fed into a fully connected neural network to predict their binding specificities. A major challenge for binding specificity prediction is the lack of a unified approach to sampling negative data. Here, we first assess the current negative sampling approaches comprehensively and suggest that the Unified Epitope is the most suitable one. Subsequently, we compare TEINet with three baseline methods and observe that TEINet achieves an average AUROC of 0.760, which outperforms baseline methods by 6.4–26%. Furthermore, we investigate the impacts of the pretraining step and notice that excessive pretraining may lower its transferability to the final prediction task. Our results and analysis show that TEINet can make an accurate prediction using only the TCR sequence (CDR3$\beta $) and the epitope sequence, providing novel insights to understand the interactions between TCRs and epitopes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36907658</pmid><doi>10.1093/bib/bbad086</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2023-03, Vol.24 (2)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2786511483
source Access via Oxford University Press (Open Access Collection)
subjects Adaptive immunity
Antigens
Binding
Complementarity-determining region 3
Deep Learning
Epitopes
Epitopes, T-Lymphocyte
Immune response
Lymphocytes T
Machine learning
Neural networks
Predictions
Protein Binding
Receptors, Antigen, T-Cell
Sampling
T cell receptors
Transfer learning
title TEINet: a deep learning framework for prediction of TCR–epitope binding specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TEINet:%20a%20deep%20learning%20framework%20for%20prediction%20of%20TCR%E2%80%93epitope%20binding%20specificity&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Jiang,%20Yuepeng&rft.date=2023-03-19&rft.volume=24&rft.issue=2&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbad086&rft_dat=%3Cproquest_TOX%3E3049109824%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049109824&rft_id=info:pmid/36907658&rft_oup_id=10.1093/bib/bbad086&rfr_iscdi=true