A method for solving boundary-value problems of linear viscoelasticity for anisotropic composites

A new method is proposed to solve some problems of linear viscoelasticity for anisotropic bodies. The method uses a branching continued fraction to approximate an irrational multivariable function. Such an approach allows obtaining a linear operator as an approximation of a multivariable operator fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International applied mechanics 2003-11, Vol.39 (11), p.1294-1304
Hauptverfasser: KAMINSKII, A. A, SELIVANOV, M. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1304
container_issue 11
container_start_page 1294
container_title International applied mechanics
container_volume 39
creator KAMINSKII, A. A
SELIVANOV, M. F
description A new method is proposed to solve some problems of linear viscoelasticity for anisotropic bodies. The method uses a branching continued fraction to approximate an irrational multivariable function. Such an approach allows obtaining a linear operator as an approximation of a multivariable operator function. The deformation of a cracked composite body with a plastic matrix is analyzed as an example. Both composite components are assumed to exhibit viscoelastic properties.
doi_str_mv 10.1023/B:INAM.0000015599.90700.86
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27864576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27864576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b30323c2ee734fc799aa9fe0f79b4b851b8da7e6efc537c08d074b480ab33dab3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwDhYS3BKcOI7t3tqKn0oFLnC2HMcGIycOdlqpb0_SVuqVPezuYXZn9AFwm6E0Qzl-WMxWb_PXFI2VEcJ5yhFFKGXlGZhkhOKEEZafDzsqcUIRJ5fgKsafQc4p5RMg57DR_bevofEBRu-2tv2Cld-0tQy7ZCvdRsMu-MrpJkJvoLOtlgFubVReOxl7q2y_21_L1kbfB99ZBZVvOh9tr-M1uDDSRX1znFPw-fT4sXxJ1u_Pq-V8nShMcJ9UGOEcq1xrigujKOdScqORobwqKkayitWS6lIbRTBViNWIFlXBkKwwroc2BfeHv0Pa342OvWiGjNo52Wq_iSKnrCwILf8jJJxhPghnB6EKPsagjeiCbQYsIkNixC8WYsQvTvjFHr9go8vd0UVGJZ0JslU2nj6QkhcZI_gPMKCI6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27859839</pqid></control><display><type>article</type><title>A method for solving boundary-value problems of linear viscoelasticity for anisotropic composites</title><source>Springer Nature - Complete Springer Journals</source><creator>KAMINSKII, A. A ; SELIVANOV, M. F</creator><creatorcontrib>KAMINSKII, A. A ; SELIVANOV, M. F</creatorcontrib><description>A new method is proposed to solve some problems of linear viscoelasticity for anisotropic bodies. The method uses a branching continued fraction to approximate an irrational multivariable function. Such an approach allows obtaining a linear operator as an approximation of a multivariable operator function. The deformation of a cracked composite body with a plastic matrix is analyzed as an example. Both composite components are assumed to exhibit viscoelastic properties.</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1023/B:INAM.0000015599.90700.86</identifier><identifier>CODEN: IAMEEU</identifier><language>eng</language><publisher>London: Consultants Bureau</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Theory and numerical methods</subject><ispartof>International applied mechanics, 2003-11, Vol.39 (11), p.1294-1304</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b30323c2ee734fc799aa9fe0f79b4b851b8da7e6efc537c08d074b480ab33dab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15694185$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KAMINSKII, A. A</creatorcontrib><creatorcontrib>SELIVANOV, M. F</creatorcontrib><title>A method for solving boundary-value problems of linear viscoelasticity for anisotropic composites</title><title>International applied mechanics</title><description>A new method is proposed to solve some problems of linear viscoelasticity for anisotropic bodies. The method uses a branching continued fraction to approximate an irrational multivariable function. Such an approach allows obtaining a linear operator as an approximation of a multivariable operator function. The deformation of a cracked composite body with a plastic matrix is analyzed as an example. Both composite components are assumed to exhibit viscoelastic properties.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Theory and numerical methods</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwDhYS3BKcOI7t3tqKn0oFLnC2HMcGIycOdlqpb0_SVuqVPezuYXZn9AFwm6E0Qzl-WMxWb_PXFI2VEcJ5yhFFKGXlGZhkhOKEEZafDzsqcUIRJ5fgKsafQc4p5RMg57DR_bevofEBRu-2tv2Cld-0tQy7ZCvdRsMu-MrpJkJvoLOtlgFubVReOxl7q2y_21_L1kbfB99ZBZVvOh9tr-M1uDDSRX1znFPw-fT4sXxJ1u_Pq-V8nShMcJ9UGOEcq1xrigujKOdScqORobwqKkayitWS6lIbRTBViNWIFlXBkKwwroc2BfeHv0Pa342OvWiGjNo52Wq_iSKnrCwILf8jJJxhPghnB6EKPsagjeiCbQYsIkNixC8WYsQvTvjFHr9go8vd0UVGJZ0JslU2nj6QkhcZI_gPMKCI6w</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>KAMINSKII, A. A</creator><creator>SELIVANOV, M. F</creator><general>Consultants Bureau</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20031101</creationdate><title>A method for solving boundary-value problems of linear viscoelasticity for anisotropic composites</title><author>KAMINSKII, A. A ; SELIVANOV, M. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b30323c2ee734fc799aa9fe0f79b4b851b8da7e6efc537c08d074b480ab33dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAMINSKII, A. A</creatorcontrib><creatorcontrib>SELIVANOV, M. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAMINSKII, A. A</au><au>SELIVANOV, M. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for solving boundary-value problems of linear viscoelasticity for anisotropic composites</atitle><jtitle>International applied mechanics</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>39</volume><issue>11</issue><spage>1294</spage><epage>1304</epage><pages>1294-1304</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><coden>IAMEEU</coden><abstract>A new method is proposed to solve some problems of linear viscoelasticity for anisotropic bodies. The method uses a branching continued fraction to approximate an irrational multivariable function. Such an approach allows obtaining a linear operator as an approximation of a multivariable operator function. The deformation of a cracked composite body with a plastic matrix is analyzed as an example. Both composite components are assumed to exhibit viscoelastic properties.</abstract><cop>London</cop><cop>New York, NY</cop><pub>Consultants Bureau</pub><doi>10.1023/B:INAM.0000015599.90700.86</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7095
ispartof International applied mechanics, 2003-11, Vol.39 (11), p.1294-1304
issn 1063-7095
1573-8582
language eng
recordid cdi_proquest_miscellaneous_27864576
source Springer Nature - Complete Springer Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Theory and numerical methods
title A method for solving boundary-value problems of linear viscoelasticity for anisotropic composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20solving%20boundary-value%20problems%20of%20linear%20viscoelasticity%20for%20anisotropic%20composites&rft.jtitle=International%20applied%20mechanics&rft.au=KAMINSKII,%20A.%20A&rft.date=2003-11-01&rft.volume=39&rft.issue=11&rft.spage=1294&rft.epage=1304&rft.pages=1294-1304&rft.issn=1063-7095&rft.eissn=1573-8582&rft.coden=IAMEEU&rft_id=info:doi/10.1023/B:INAM.0000015599.90700.86&rft_dat=%3Cproquest_cross%3E27864576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27859839&rft_id=info:pmid/&rfr_iscdi=true