A mathematical model for PEMFC in different flow modes

A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2003-10, Vol.124 (1), p.1-11
Hauptverfasser: Ge, Shan-Hai, Yi, Bao-Lian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Journal of power sources
container_volume 124
creator Ge, Shan-Hai
Yi, Bao-Lian
description A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.
doi_str_mv 10.1016/S0378-7753(03)00584-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27863171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775303005846</els_id><sourcerecordid>27863171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_grAXRQ-rmWTz4UlKaVWoKKjnsJtMMLIfNdkq_vduW9GjMMxcfm8e7xFyDPQCKMjLJ8qVzpUS_Izyc0qFLnK5Q0agFc-ZEmKXjH6RfXKQ0hulFEDREZGTrCn7VxxWsGWdNZ3DOvNdzB5n9_NpFtrMBe8xYttnvu4-N0Q6JHu-rBMe_dwxeZnPnqe3-eLh5m46WeS2UNDnUlWqciC0qwoJlaNWuUIP3qoCL9EyEJ5qVljOEKFirJC2YsIBryjlQvMxOd3-XcbufYWpN01IFuu6bLFbJcOUlhwUDKDYgjZ2KUX0ZhlDU8YvA9SsWzKblsy6AkOHWbdk5KA7-TEo05Dfx7K1If2JRQFXwIqBu95yOKT9CBhNsgFbiy5EtL1xXfjH6RsMWnlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27863171</pqid></control><display><type>article</type><title>A mathematical model for PEMFC in different flow modes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ge, Shan-Hai ; Yi, Bao-Lian</creator><creatorcontrib>Ge, Shan-Hai ; Yi, Bao-Lian</creatorcontrib><description>A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(03)00584-6</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Counterflow ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Flow mode ; Fuel cells ; Mathematical model ; Proton exchange membrane fuel cell ; Water transport</subject><ispartof>Journal of power sources, 2003-10, Vol.124 (1), p.1-11</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</citedby><cites>FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-7753(03)00584-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15419124$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Shan-Hai</creatorcontrib><creatorcontrib>Yi, Bao-Lian</creatorcontrib><title>A mathematical model for PEMFC in different flow modes</title><title>Journal of power sources</title><description>A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.</description><subject>Applied sciences</subject><subject>Counterflow</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Flow mode</subject><subject>Fuel cells</subject><subject>Mathematical model</subject><subject>Proton exchange membrane fuel cell</subject><subject>Water transport</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_grAXRQ-rmWTz4UlKaVWoKKjnsJtMMLIfNdkq_vduW9GjMMxcfm8e7xFyDPQCKMjLJ8qVzpUS_Izyc0qFLnK5Q0agFc-ZEmKXjH6RfXKQ0hulFEDREZGTrCn7VxxWsGWdNZ3DOvNdzB5n9_NpFtrMBe8xYttnvu4-N0Q6JHu-rBMe_dwxeZnPnqe3-eLh5m46WeS2UNDnUlWqciC0qwoJlaNWuUIP3qoCL9EyEJ5qVljOEKFirJC2YsIBryjlQvMxOd3-XcbufYWpN01IFuu6bLFbJcOUlhwUDKDYgjZ2KUX0ZhlDU8YvA9SsWzKblsy6AkOHWbdk5KA7-TEo05Dfx7K1If2JRQFXwIqBu95yOKT9CBhNsgFbiy5EtL1xXfjH6RsMWnlc</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Ge, Shan-Hai</creator><creator>Yi, Bao-Lian</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20031001</creationdate><title>A mathematical model for PEMFC in different flow modes</title><author>Ge, Shan-Hai ; Yi, Bao-Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Counterflow</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Flow mode</topic><topic>Fuel cells</topic><topic>Mathematical model</topic><topic>Proton exchange membrane fuel cell</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Shan-Hai</creatorcontrib><creatorcontrib>Yi, Bao-Lian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Shan-Hai</au><au>Yi, Bao-Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model for PEMFC in different flow modes</atitle><jtitle>Journal of power sources</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>124</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(03)00584-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2003-10, Vol.124 (1), p.1-11
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_27863171
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Counterflow
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Flow mode
Fuel cells
Mathematical model
Proton exchange membrane fuel cell
Water transport
title A mathematical model for PEMFC in different flow modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20for%20PEMFC%20in%20different%20flow%20modes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Ge,%20Shan-Hai&rft.date=2003-10-01&rft.volume=124&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(03)00584-6&rft_dat=%3Cproquest_cross%3E27863171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27863171&rft_id=info:pmid/&rft_els_id=S0378775303005846&rfr_iscdi=true