A mathematical model for PEMFC in different flow modes
A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membra...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2003-10, Vol.124 (1), p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of power sources |
container_volume | 124 |
creator | Ge, Shan-Hai Yi, Bao-Lian |
description | A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results. |
doi_str_mv | 10.1016/S0378-7753(03)00584-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27863171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775303005846</els_id><sourcerecordid>27863171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_grAXRQ-rmWTz4UlKaVWoKKjnsJtMMLIfNdkq_vduW9GjMMxcfm8e7xFyDPQCKMjLJ8qVzpUS_Izyc0qFLnK5Q0agFc-ZEmKXjH6RfXKQ0hulFEDREZGTrCn7VxxWsGWdNZ3DOvNdzB5n9_NpFtrMBe8xYttnvu4-N0Q6JHu-rBMe_dwxeZnPnqe3-eLh5m46WeS2UNDnUlWqciC0qwoJlaNWuUIP3qoCL9EyEJ5qVljOEKFirJC2YsIBryjlQvMxOd3-XcbufYWpN01IFuu6bLFbJcOUlhwUDKDYgjZ2KUX0ZhlDU8YvA9SsWzKblsy6AkOHWbdk5KA7-TEo05Dfx7K1If2JRQFXwIqBu95yOKT9CBhNsgFbiy5EtL1xXfjH6RsMWnlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27863171</pqid></control><display><type>article</type><title>A mathematical model for PEMFC in different flow modes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ge, Shan-Hai ; Yi, Bao-Lian</creator><creatorcontrib>Ge, Shan-Hai ; Yi, Bao-Lian</creatorcontrib><description>A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(03)00584-6</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Counterflow ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Flow mode ; Fuel cells ; Mathematical model ; Proton exchange membrane fuel cell ; Water transport</subject><ispartof>Journal of power sources, 2003-10, Vol.124 (1), p.1-11</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</citedby><cites>FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-7753(03)00584-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15419124$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Shan-Hai</creatorcontrib><creatorcontrib>Yi, Bao-Lian</creatorcontrib><title>A mathematical model for PEMFC in different flow modes</title><title>Journal of power sources</title><description>A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.</description><subject>Applied sciences</subject><subject>Counterflow</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Flow mode</subject><subject>Fuel cells</subject><subject>Mathematical model</subject><subject>Proton exchange membrane fuel cell</subject><subject>Water transport</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_grAXRQ-rmWTz4UlKaVWoKKjnsJtMMLIfNdkq_vduW9GjMMxcfm8e7xFyDPQCKMjLJ8qVzpUS_Izyc0qFLnK5Q0agFc-ZEmKXjH6RfXKQ0hulFEDREZGTrCn7VxxWsGWdNZ3DOvNdzB5n9_NpFtrMBe8xYttnvu4-N0Q6JHu-rBMe_dwxeZnPnqe3-eLh5m46WeS2UNDnUlWqciC0qwoJlaNWuUIP3qoCL9EyEJ5qVljOEKFirJC2YsIBryjlQvMxOd3-XcbufYWpN01IFuu6bLFbJcOUlhwUDKDYgjZ2KUX0ZhlDU8YvA9SsWzKblsy6AkOHWbdk5KA7-TEo05Dfx7K1If2JRQFXwIqBu95yOKT9CBhNsgFbiy5EtL1xXfjH6RsMWnlc</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Ge, Shan-Hai</creator><creator>Yi, Bao-Lian</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20031001</creationdate><title>A mathematical model for PEMFC in different flow modes</title><author>Ge, Shan-Hai ; Yi, Bao-Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-67b7bd158db461bd0c7d480017b1f6ec215f0824c32ee1b2246cb25d13b003583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Counterflow</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Flow mode</topic><topic>Fuel cells</topic><topic>Mathematical model</topic><topic>Proton exchange membrane fuel cell</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Shan-Hai</creatorcontrib><creatorcontrib>Yi, Bao-Lian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Shan-Hai</au><au>Yi, Bao-Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model for PEMFC in different flow modes</atitle><jtitle>Journal of power sources</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>124</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect of flow mode (coflow and counterflow), operation conditions and membrane thickness on the water transport, ohmic resistance and water distribution in the membrane, current density distribution along the channel and performance of PEMFC. Effect of liquid water on the transport in the two-phase region of cathode diffusion layer was considered. Water transport in the membrane by electro-osmosis drag, diffusion and convection were combined in this model. The model predicts that the dry reactant gases can be well internally humidified and maintain high performance when PEMFC is operated in the counterflow mode without external humidification. Counterflow mode does not show any advantageous while the reactant gases are high humidified or saturated. Compared to the coflow mode, counterflow mode improves the current density distribution with dry or low humidity gases. The higher the anode is humidified, the more water will migrate from anode to cathode. The modeling results compare very well with experimental results.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(03)00584-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2003-10, Vol.124 (1), p.1-11 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_27863171 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Counterflow Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Flow mode Fuel cells Mathematical model Proton exchange membrane fuel cell Water transport |
title | A mathematical model for PEMFC in different flow modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20for%20PEMFC%20in%20different%20flow%20modes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Ge,%20Shan-Hai&rft.date=2003-10-01&rft.volume=124&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(03)00584-6&rft_dat=%3Cproquest_cross%3E27863171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27863171&rft_id=info:pmid/&rft_els_id=S0378775303005846&rfr_iscdi=true |