The trace metal economy of the coral holobiont: supplies, demands and exchanges

ABSTRACT The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological reviews of the Cambridge Philosophical Society 2023-04, Vol.98 (2), p.623-642
Hauptverfasser: Reich, Hannah G., Camp, Emma F., Roger, Liza M., Putnam, Hollie M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 2
container_start_page 623
container_title Biological reviews of the Cambridge Philosophical Society
container_volume 98
creator Reich, Hannah G.
Camp, Emma F.
Roger, Liza M.
Putnam, Hollie M.
description ABSTRACT The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef‐building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross‐kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross‐scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.
doi_str_mv 10.1111/brv.12922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2786096882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786096882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-8ce34988e27aa10a350f5a3abb6c213dc7be0c4b5e769123fb1a2a6199f70543</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK0e_AOy4EXBtPuRbLLetPgFhYIU8RY224lNSbJ1N1H779021YPgHGaGmYd3hhehU0qG1Mcosx9DyiRje6hPQyEDmkSv-9s-DGLJaQ8dObckxA8EP0Q9LhIZM0H6aDpbAG6s0oAraFSJQZvaVGtsctz4lTbWDxemNFlh6uYau3a1KgtwV3gOlarnDvuE4UsvVP0G7hgd5Kp0cLKrAzS7v5uNH4PJ9OFpfDMJNE8SFiQaeCiTBFisFCWKRySPFFdZJjSjfK7jDIgOswhiISnjeUYVU4JKmcckCvkAXXSyK2veW3BNWhVOQ1mqGkzrUhYngkjhT3n0_A-6NK2t_XMbKmKEhyzy1GVHaWucs5CnK1tUyq5TStKNyak3Od2a7NmznWKbVTD_JX9c9cCoAz6LEtb_K6W3zy-d5DdEMITp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785203425</pqid></control><display><type>article</type><title>The trace metal economy of the coral holobiont: supplies, demands and exchanges</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Reich, Hannah G. ; Camp, Emma F. ; Roger, Liza M. ; Putnam, Hollie M.</creator><creatorcontrib>Reich, Hannah G. ; Camp, Emma F. ; Roger, Liza M. ; Putnam, Hollie M.</creatorcontrib><description>ABSTRACT The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef‐building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross‐kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross‐scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.</description><identifier>ISSN: 1464-7931</identifier><identifier>EISSN: 1469-185X</identifier><identifier>DOI: 10.1111/brv.12922</identifier><identifier>PMID: 36897260</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abiotic factors ; Algae ; Animals ; Anthozoa - physiology ; Availability ; Bacteria - metabolism ; Biological activity ; Climate change ; coral reef ; Coral reef ecosystems ; Coral Reefs ; Corals ; Cycles ; dinoflagellate ; Dinoflagellates ; Ecosystem ; Ecosystems ; Endolithic algae ; Exchanging ; Homeostasis ; Metals ; microbiome ; micronutrients ; Nutrient cycles ; Oligotrophic environments ; physiology ; Supplies ; Symbiosis ; Temperature ; Trace elements ; Trace metals ; Viruses</subject><ispartof>Biological reviews of the Cambridge Philosophical Society, 2023-04, Vol.98 (2), p.623-642</ispartof><rights>2022 Cambridge Philosophical Society.</rights><rights>Biological Reviews © 2023 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-8ce34988e27aa10a350f5a3abb6c213dc7be0c4b5e769123fb1a2a6199f70543</citedby><cites>FETCH-LOGICAL-c3882-8ce34988e27aa10a350f5a3abb6c213dc7be0c4b5e769123fb1a2a6199f70543</cites><orcidid>0000-0003-2274-8311 ; 0000-0003-2322-3269 ; 0000-0003-1962-1336 ; 0000-0002-8622-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbrv.12922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbrv.12922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36897260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reich, Hannah G.</creatorcontrib><creatorcontrib>Camp, Emma F.</creatorcontrib><creatorcontrib>Roger, Liza M.</creatorcontrib><creatorcontrib>Putnam, Hollie M.</creatorcontrib><title>The trace metal economy of the coral holobiont: supplies, demands and exchanges</title><title>Biological reviews of the Cambridge Philosophical Society</title><addtitle>Biol Rev Camb Philos Soc</addtitle><description>ABSTRACT The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef‐building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross‐kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross‐scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.</description><subject>Abiotic factors</subject><subject>Algae</subject><subject>Animals</subject><subject>Anthozoa - physiology</subject><subject>Availability</subject><subject>Bacteria - metabolism</subject><subject>Biological activity</subject><subject>Climate change</subject><subject>coral reef</subject><subject>Coral reef ecosystems</subject><subject>Coral Reefs</subject><subject>Corals</subject><subject>Cycles</subject><subject>dinoflagellate</subject><subject>Dinoflagellates</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Endolithic algae</subject><subject>Exchanging</subject><subject>Homeostasis</subject><subject>Metals</subject><subject>microbiome</subject><subject>micronutrients</subject><subject>Nutrient cycles</subject><subject>Oligotrophic environments</subject><subject>physiology</subject><subject>Supplies</subject><subject>Symbiosis</subject><subject>Temperature</subject><subject>Trace elements</subject><subject>Trace metals</subject><subject>Viruses</subject><issn>1464-7931</issn><issn>1469-185X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK0e_AOy4EXBtPuRbLLetPgFhYIU8RY224lNSbJ1N1H779021YPgHGaGmYd3hhehU0qG1Mcosx9DyiRje6hPQyEDmkSv-9s-DGLJaQ8dObckxA8EP0Q9LhIZM0H6aDpbAG6s0oAraFSJQZvaVGtsctz4lTbWDxemNFlh6uYau3a1KgtwV3gOlarnDvuE4UsvVP0G7hgd5Kp0cLKrAzS7v5uNH4PJ9OFpfDMJNE8SFiQaeCiTBFisFCWKRySPFFdZJjSjfK7jDIgOswhiISnjeUYVU4JKmcckCvkAXXSyK2veW3BNWhVOQ1mqGkzrUhYngkjhT3n0_A-6NK2t_XMbKmKEhyzy1GVHaWucs5CnK1tUyq5TStKNyak3Od2a7NmznWKbVTD_JX9c9cCoAz6LEtb_K6W3zy-d5DdEMITp</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Reich, Hannah G.</creator><creator>Camp, Emma F.</creator><creator>Roger, Liza M.</creator><creator>Putnam, Hollie M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2274-8311</orcidid><orcidid>https://orcid.org/0000-0003-2322-3269</orcidid><orcidid>https://orcid.org/0000-0003-1962-1336</orcidid><orcidid>https://orcid.org/0000-0002-8622-8801</orcidid></search><sort><creationdate>202304</creationdate><title>The trace metal economy of the coral holobiont: supplies, demands and exchanges</title><author>Reich, Hannah G. ; Camp, Emma F. ; Roger, Liza M. ; Putnam, Hollie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-8ce34988e27aa10a350f5a3abb6c213dc7be0c4b5e769123fb1a2a6199f70543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abiotic factors</topic><topic>Algae</topic><topic>Animals</topic><topic>Anthozoa - physiology</topic><topic>Availability</topic><topic>Bacteria - metabolism</topic><topic>Biological activity</topic><topic>Climate change</topic><topic>coral reef</topic><topic>Coral reef ecosystems</topic><topic>Coral Reefs</topic><topic>Corals</topic><topic>Cycles</topic><topic>dinoflagellate</topic><topic>Dinoflagellates</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Endolithic algae</topic><topic>Exchanging</topic><topic>Homeostasis</topic><topic>Metals</topic><topic>microbiome</topic><topic>micronutrients</topic><topic>Nutrient cycles</topic><topic>Oligotrophic environments</topic><topic>physiology</topic><topic>Supplies</topic><topic>Symbiosis</topic><topic>Temperature</topic><topic>Trace elements</topic><topic>Trace metals</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reich, Hannah G.</creatorcontrib><creatorcontrib>Camp, Emma F.</creatorcontrib><creatorcontrib>Roger, Liza M.</creatorcontrib><creatorcontrib>Putnam, Hollie M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reich, Hannah G.</au><au>Camp, Emma F.</au><au>Roger, Liza M.</au><au>Putnam, Hollie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The trace metal economy of the coral holobiont: supplies, demands and exchanges</atitle><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle><addtitle>Biol Rev Camb Philos Soc</addtitle><date>2023-04</date><risdate>2023</risdate><volume>98</volume><issue>2</issue><spage>623</spage><epage>642</epage><pages>623-642</pages><issn>1464-7931</issn><eissn>1469-185X</eissn><abstract>ABSTRACT The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef‐building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross‐kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross‐scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36897260</pmid><doi>10.1111/brv.12922</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2274-8311</orcidid><orcidid>https://orcid.org/0000-0003-2322-3269</orcidid><orcidid>https://orcid.org/0000-0003-1962-1336</orcidid><orcidid>https://orcid.org/0000-0002-8622-8801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7931
ispartof Biological reviews of the Cambridge Philosophical Society, 2023-04, Vol.98 (2), p.623-642
issn 1464-7931
1469-185X
language eng
recordid cdi_proquest_miscellaneous_2786096882
source MEDLINE; Access via Wiley Online Library
subjects Abiotic factors
Algae
Animals
Anthozoa - physiology
Availability
Bacteria - metabolism
Biological activity
Climate change
coral reef
Coral reef ecosystems
Coral Reefs
Corals
Cycles
dinoflagellate
Dinoflagellates
Ecosystem
Ecosystems
Endolithic algae
Exchanging
Homeostasis
Metals
microbiome
micronutrients
Nutrient cycles
Oligotrophic environments
physiology
Supplies
Symbiosis
Temperature
Trace elements
Trace metals
Viruses
title The trace metal economy of the coral holobiont: supplies, demands and exchanges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20trace%20metal%20economy%20of%20the%20coral%20holobiont:%20supplies,%20demands%20and%20exchanges&rft.jtitle=Biological%20reviews%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Reich,%20Hannah%20G.&rft.date=2023-04&rft.volume=98&rft.issue=2&rft.spage=623&rft.epage=642&rft.pages=623-642&rft.issn=1464-7931&rft.eissn=1469-185X&rft_id=info:doi/10.1111/brv.12922&rft_dat=%3Cproquest_cross%3E2786096882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785203425&rft_id=info:pmid/36897260&rfr_iscdi=true