Molecular Views on Fischer–Tropsch Synthesis

For nearly a century, the Fischer–Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2023-05, Vol.123 (9), p.5798-5858
Hauptverfasser: Rommens, Konstantijn Tom, Saeys, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5858
container_issue 9
container_start_page 5798
container_title Chemical reviews
container_volume 123
creator Rommens, Konstantijn Tom
Saeys, Mark
description For nearly a century, the Fischer–Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-modeling-based bottom-up approach has brought this molecular picture a step closer. Theoretical models provided a structural picture of the Co catalyst particles. Recent surface science experiments and density functional theory (DFT) calculations highlighted the importance of realistic surface coverages, which can induce surface reconstruction and impact the stability of reaction intermediates. For Co-based FTS, detailed microkinetic simulations and mechanistic experiments are moving toward a consensus about the active sites and the reaction mechanism. The dynamic phase evolution of Fe-based catalysts under the reaction conditions complicates identification of the surface structure and the active sites. New techniques can help tackle the combinatorial complexity in these systems. Experimental and DFT studies have addressed the mechanism for Fe-based catalysts; the absence of a clear molecular picture of the active sites, however, limits the development of a molecular view of the mechanism. Finally, direct CO2 hydrogenation to long-chain hydrocarbons could present a sustainable pathway for FT synthesis.
doi_str_mv 10.1021/acs.chemrev.2c00508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2786096066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786096066</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-a8747813fd004ad51e27735af8880571ce621cf9b3335e658a06ef6c32b403a13</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlafQJABN25mepJMLrOUYlWouLC6DWmaoVPmUpNOpTvfwTf0SUzp2IULV0ng-_-c8yF0iSHBQPBQG5-Yha2c3STEADCQR6iPGYGYywyOUR8AsphwznrozPtleDJGxCnq0QAIwWUfJU9NaU1bahe9FfbDR00djQsfet3359fUNatwj1629XphfeHP0UmuS28vunOAXsd309FDPHm-fxzdTmKdYrmOtRSpkJjmc4BUzxm2RAjKdC6lBCawsZxgk2czSimznEkN3ObcUDJLgWpMB-hm37tyzXtr_VpVYShblrq2TesVEZJDxoHzgF7_QZdN6-ownSISE5C7pQNF95RxjffO5mrlikq7rcKgdjpV0Kk6narTGVJXXXc7q-z8kPn1F4DhHtilD__-V_kDmZ2CDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812080552</pqid></control><display><type>article</type><title>Molecular Views on Fischer–Tropsch Synthesis</title><source>ACS Publications</source><creator>Rommens, Konstantijn Tom ; Saeys, Mark</creator><creatorcontrib>Rommens, Konstantijn Tom ; Saeys, Mark</creatorcontrib><description>For nearly a century, the Fischer–Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-modeling-based bottom-up approach has brought this molecular picture a step closer. Theoretical models provided a structural picture of the Co catalyst particles. Recent surface science experiments and density functional theory (DFT) calculations highlighted the importance of realistic surface coverages, which can induce surface reconstruction and impact the stability of reaction intermediates. For Co-based FTS, detailed microkinetic simulations and mechanistic experiments are moving toward a consensus about the active sites and the reaction mechanism. The dynamic phase evolution of Fe-based catalysts under the reaction conditions complicates identification of the surface structure and the active sites. New techniques can help tackle the combinatorial complexity in these systems. Experimental and DFT studies have addressed the mechanism for Fe-based catalysts; the absence of a clear molecular picture of the active sites, however, limits the development of a molecular view of the mechanism. Finally, direct CO2 hydrogenation to long-chain hydrocarbons could present a sustainable pathway for FT synthesis.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.2c00508</identifier><identifier>PMID: 36897768</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon dioxide ; Catalysts ; Chemical synthesis ; Combinatorial analysis ; Density functional theory ; Fischer-Tropsch process ; Reaction intermediates ; Reaction mechanisms ; Surface stability ; Surface structure</subject><ispartof>Chemical reviews, 2023-05, Vol.123 (9), p.5798-5858</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society May 10, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-a8747813fd004ad51e27735af8880571ce621cf9b3335e658a06ef6c32b403a13</citedby><cites>FETCH-LOGICAL-a418t-a8747813fd004ad51e27735af8880571ce621cf9b3335e658a06ef6c32b403a13</cites><orcidid>0000-0002-3426-6662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.2c00508$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.2c00508$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36897768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rommens, Konstantijn Tom</creatorcontrib><creatorcontrib>Saeys, Mark</creatorcontrib><title>Molecular Views on Fischer–Tropsch Synthesis</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>For nearly a century, the Fischer–Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-modeling-based bottom-up approach has brought this molecular picture a step closer. Theoretical models provided a structural picture of the Co catalyst particles. Recent surface science experiments and density functional theory (DFT) calculations highlighted the importance of realistic surface coverages, which can induce surface reconstruction and impact the stability of reaction intermediates. For Co-based FTS, detailed microkinetic simulations and mechanistic experiments are moving toward a consensus about the active sites and the reaction mechanism. The dynamic phase evolution of Fe-based catalysts under the reaction conditions complicates identification of the surface structure and the active sites. New techniques can help tackle the combinatorial complexity in these systems. Experimental and DFT studies have addressed the mechanism for Fe-based catalysts; the absence of a clear molecular picture of the active sites, however, limits the development of a molecular view of the mechanism. Finally, direct CO2 hydrogenation to long-chain hydrocarbons could present a sustainable pathway for FT synthesis.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Combinatorial analysis</subject><subject>Density functional theory</subject><subject>Fischer-Tropsch process</subject><subject>Reaction intermediates</subject><subject>Reaction mechanisms</subject><subject>Surface stability</subject><subject>Surface structure</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMotlafQJABN25mepJMLrOUYlWouLC6DWmaoVPmUpNOpTvfwTf0SUzp2IULV0ng-_-c8yF0iSHBQPBQG5-Yha2c3STEADCQR6iPGYGYywyOUR8AsphwznrozPtleDJGxCnq0QAIwWUfJU9NaU1bahe9FfbDR00djQsfet3359fUNatwj1629XphfeHP0UmuS28vunOAXsd309FDPHm-fxzdTmKdYrmOtRSpkJjmc4BUzxm2RAjKdC6lBCawsZxgk2czSimznEkN3ObcUDJLgWpMB-hm37tyzXtr_VpVYShblrq2TesVEZJDxoHzgF7_QZdN6-ownSISE5C7pQNF95RxjffO5mrlikq7rcKgdjpV0Kk6narTGVJXXXc7q-z8kPn1F4DhHtilD__-V_kDmZ2CDQ</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Rommens, Konstantijn Tom</creator><creator>Saeys, Mark</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3426-6662</orcidid></search><sort><creationdate>20230510</creationdate><title>Molecular Views on Fischer–Tropsch Synthesis</title><author>Rommens, Konstantijn Tom ; Saeys, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-a8747813fd004ad51e27735af8880571ce621cf9b3335e658a06ef6c32b403a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Combinatorial analysis</topic><topic>Density functional theory</topic><topic>Fischer-Tropsch process</topic><topic>Reaction intermediates</topic><topic>Reaction mechanisms</topic><topic>Surface stability</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rommens, Konstantijn Tom</creatorcontrib><creatorcontrib>Saeys, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rommens, Konstantijn Tom</au><au>Saeys, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Views on Fischer–Tropsch Synthesis</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>123</volume><issue>9</issue><spage>5798</spage><epage>5858</epage><pages>5798-5858</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>For nearly a century, the Fischer–Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-modeling-based bottom-up approach has brought this molecular picture a step closer. Theoretical models provided a structural picture of the Co catalyst particles. Recent surface science experiments and density functional theory (DFT) calculations highlighted the importance of realistic surface coverages, which can induce surface reconstruction and impact the stability of reaction intermediates. For Co-based FTS, detailed microkinetic simulations and mechanistic experiments are moving toward a consensus about the active sites and the reaction mechanism. The dynamic phase evolution of Fe-based catalysts under the reaction conditions complicates identification of the surface structure and the active sites. New techniques can help tackle the combinatorial complexity in these systems. Experimental and DFT studies have addressed the mechanism for Fe-based catalysts; the absence of a clear molecular picture of the active sites, however, limits the development of a molecular view of the mechanism. Finally, direct CO2 hydrogenation to long-chain hydrocarbons could present a sustainable pathway for FT synthesis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36897768</pmid><doi>10.1021/acs.chemrev.2c00508</doi><tpages>61</tpages><orcidid>https://orcid.org/0000-0002-3426-6662</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2023-05, Vol.123 (9), p.5798-5858
issn 0009-2665
1520-6890
language eng
recordid cdi_proquest_miscellaneous_2786096066
source ACS Publications
subjects Carbon dioxide
Catalysts
Chemical synthesis
Combinatorial analysis
Density functional theory
Fischer-Tropsch process
Reaction intermediates
Reaction mechanisms
Surface stability
Surface structure
title Molecular Views on Fischer–Tropsch Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Views%20on%20Fischer%E2%80%93Tropsch%20Synthesis&rft.jtitle=Chemical%20reviews&rft.au=Rommens,%20Konstantijn%20Tom&rft.date=2023-05-10&rft.volume=123&rft.issue=9&rft.spage=5798&rft.epage=5858&rft.pages=5798-5858&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.2c00508&rft_dat=%3Cproquest_cross%3E2786096066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812080552&rft_id=info:pmid/36897768&rfr_iscdi=true