Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys
A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10, (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10, (Ti 25Zr 25H...
Gespeichert in:
Veröffentlicht in: | Journal of non-crystalline solids 2003-03, Vol.317 (1), p.17-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Journal of non-crystalline solids |
container_volume | 317 |
creator | Kim, K.B. Warren, P.J. Cantor, B. |
description | A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10, (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10, (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25 Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys with composition range
x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range
x=20–70 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range
x=20–70 at.%. The most stable amorphous alloy was (Ti
33Zr
33Hf
33)
40(Ni
50Cu
50)
50Al
10 with a crystallisation temperature of
T
x
=545 °C. Addition of Ag decreased the composition range of the amorphous phase to
x=20–40 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti
33Zr
33Hf
33)
50(Ni
33Cu
33Ag
33)
40Al
10 with a crystallisation–glass transition temperature difference of
T
x
−
T
g=103 °C. |
doi_str_mv | 10.1016/S0022-3093(02)02002-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27855650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309302020021</els_id><sourcerecordid>27855650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6CkI3SQkeTzKOZlZSiVtC68LFwEzJ3EolkJjWZEbrzH_xDv8QZK7r0bg73ch7cg9AhJSeU0Oz0jhDGopjk8YiwMWHdGtEtNKB8GkcJp2wbDX4pu2gvhBfSzTTmA_R4oxpprQH8bGUIWDtfyca4GpsaV61tDLhq5WpVN3h0byb4yU_wQk_wshh_vn-Mlt1p3k7w7LlfZxZ3Zm4d9tGOljaogx8cooeL8_v5Irq-vbyaz64jSHjWRGUKGZO5UryMM17kmmkieQ4EEiVB8gKIlixjJaR5wVRCeQ8ZUCpzXSRFPETHG9-Vd6-tCo2oTABlrayVa4NgU56mWUo6YrohgncheKXFyptK-rWgRPQtiu8WRV-RIEx8tyhopzv6CZABpNVe1mDCnzhJk4zHvf_Zhqe6b9-M8iKAUTWo0ngFjSid-SfpC0lVhng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27855650</pqid></control><display><type>article</type><title>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, K.B. ; Warren, P.J. ; Cantor, B.</creator><creatorcontrib>Kim, K.B. ; Warren, P.J. ; Cantor, B.</creatorcontrib><description>A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10, (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10, (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25 Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys with composition range
x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range
x=20–70 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range
x=20–70 at.%. The most stable amorphous alloy was (Ti
33Zr
33Hf
33)
40(Ni
50Cu
50)
50Al
10 with a crystallisation temperature of
T
x
=545 °C. Addition of Ag decreased the composition range of the amorphous phase to
x=20–40 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti
33Zr
33Hf
33)
50(Ni
33Cu
33Ag
33)
40Al
10 with a crystallisation–glass transition temperature difference of
T
x
−
T
g=103 °C.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/S0022-3093(02)02002-1</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transitions ; Metals. Metallurgy ; Physics ; Specific phase transitions</subject><ispartof>Journal of non-crystalline solids, 2003-03, Vol.317 (1), p.17-22</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</citedby><cites>FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-3093(02)02002-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14546830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, K.B.</creatorcontrib><creatorcontrib>Warren, P.J.</creatorcontrib><creatorcontrib>Cantor, B.</creatorcontrib><title>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</title><title>Journal of non-crystalline solids</title><description>A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10, (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10, (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25 Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys with composition range
x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range
x=20–70 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range
x=20–70 at.%. The most stable amorphous alloy was (Ti
33Zr
33Hf
33)
40(Ni
50Cu
50)
50Al
10 with a crystallisation temperature of
T
x
=545 °C. Addition of Ag decreased the composition range of the amorphous phase to
x=20–40 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti
33Zr
33Hf
33)
50(Ni
33Cu
33Ag
33)
40Al
10 with a crystallisation–glass transition temperature difference of
T
x
−
T
g=103 °C.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transitions</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Specific phase transitions</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgrX6CkI3SQkeTzKOZlZSiVtC68LFwEzJ3EolkJjWZEbrzH_xDv8QZK7r0bg73ch7cg9AhJSeU0Oz0jhDGopjk8YiwMWHdGtEtNKB8GkcJp2wbDX4pu2gvhBfSzTTmA_R4oxpprQH8bGUIWDtfyca4GpsaV61tDLhq5WpVN3h0byb4yU_wQk_wshh_vn-Mlt1p3k7w7LlfZxZ3Zm4d9tGOljaogx8cooeL8_v5Irq-vbyaz64jSHjWRGUKGZO5UryMM17kmmkieQ4EEiVB8gKIlixjJaR5wVRCeQ8ZUCpzXSRFPETHG9-Vd6-tCo2oTABlrayVa4NgU56mWUo6YrohgncheKXFyptK-rWgRPQtiu8WRV-RIEx8tyhopzv6CZABpNVe1mDCnzhJk4zHvf_Zhqe6b9-M8iKAUTWo0ngFjSid-SfpC0lVhng</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Kim, K.B.</creator><creator>Warren, P.J.</creator><creator>Cantor, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030301</creationdate><title>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</title><author>Kim, K.B. ; Warren, P.J. ; Cantor, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transitions</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, K.B.</creatorcontrib><creatorcontrib>Warren, P.J.</creatorcontrib><creatorcontrib>Cantor, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, K.B.</au><au>Warren, P.J.</au><au>Cantor, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>317</volume><issue>1</issue><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10, (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10, (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25 Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys with composition range
x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range
x=20–70 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
50Cu
50)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
50Cu
50)
x
Al
10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range
x=20–70 at.%. The most stable amorphous alloy was (Ti
33Zr
33Hf
33)
40(Ni
50Cu
50)
50Al
10 with a crystallisation temperature of
T
x
=545 °C. Addition of Ag decreased the composition range of the amorphous phase to
x=20–40 at.% for the (Ti
33Zr
33Hf
33)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 and (Ti
25Zr
25Hf
25Nb
25)
90−
x
(Ni
33Cu
33Ag
33)
x
Al
10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti
33Zr
33Hf
33)
50(Ni
33Cu
33Ag
33)
40Al
10 with a crystallisation–glass transition temperature difference of
T
x
−
T
g=103 °C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0022-3093(02)02002-1</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3093 |
ispartof | Journal of non-crystalline solids, 2003-03, Vol.317 (1), p.17-22 |
issn | 0022-3093 1873-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_27855650 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Equations of state, phase equilibria, and phase transitions Exact sciences and technology Glass transitions Metals. Metallurgy Physics Specific phase transitions |
title | Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallic%20glass%20formation%20in%20multicomponent%20(Ti,%20Zr,%20Hf,%20Nb)%E2%80%93(Ni,%20Cu,%20Ag)%E2%80%93Al%20alloys&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Kim,%20K.B.&rft.date=2003-03-01&rft.volume=317&rft.issue=1&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/S0022-3093(02)02002-1&rft_dat=%3Cproquest_cross%3E27855650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27855650&rft_id=info:pmid/&rft_els_id=S0022309302020021&rfr_iscdi=true |