Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys

A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10, (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10, (Ti 25Zr 25H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2003-03, Vol.317 (1), p.17-22
Hauptverfasser: Kim, K.B., Warren, P.J., Cantor, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 17
container_title Journal of non-crystalline solids
container_volume 317
creator Kim, K.B.
Warren, P.J.
Cantor, B.
description A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10, (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10, (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25 Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys with composition range x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range x=20–70 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range x=20–70 at.%. The most stable amorphous alloy was (Ti 33Zr 33Hf 33) 40(Ni 50Cu 50) 50Al 10 with a crystallisation temperature of T x =545 °C. Addition of Ag decreased the composition range of the amorphous phase to x=20–40 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti 33Zr 33Hf 33) 50(Ni 33Cu 33Ag 33) 40Al 10 with a crystallisation–glass transition temperature difference of T x − T g=103 °C.
doi_str_mv 10.1016/S0022-3093(02)02002-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27855650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309302020021</els_id><sourcerecordid>27855650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6CkI3SQkeTzKOZlZSiVtC68LFwEzJ3EolkJjWZEbrzH_xDv8QZK7r0bg73ch7cg9AhJSeU0Oz0jhDGopjk8YiwMWHdGtEtNKB8GkcJp2wbDX4pu2gvhBfSzTTmA_R4oxpprQH8bGUIWDtfyca4GpsaV61tDLhq5WpVN3h0byb4yU_wQk_wshh_vn-Mlt1p3k7w7LlfZxZ3Zm4d9tGOljaogx8cooeL8_v5Irq-vbyaz64jSHjWRGUKGZO5UryMM17kmmkieQ4EEiVB8gKIlixjJaR5wVRCeQ8ZUCpzXSRFPETHG9-Vd6-tCo2oTABlrayVa4NgU56mWUo6YrohgncheKXFyptK-rWgRPQtiu8WRV-RIEx8tyhopzv6CZABpNVe1mDCnzhJk4zHvf_Zhqe6b9-M8iKAUTWo0ngFjSid-SfpC0lVhng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27855650</pqid></control><display><type>article</type><title>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, K.B. ; Warren, P.J. ; Cantor, B.</creator><creatorcontrib>Kim, K.B. ; Warren, P.J. ; Cantor, B.</creatorcontrib><description>A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10, (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10, (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25 Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys with composition range x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range x=20–70 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range x=20–70 at.%. The most stable amorphous alloy was (Ti 33Zr 33Hf 33) 40(Ni 50Cu 50) 50Al 10 with a crystallisation temperature of T x =545 °C. Addition of Ag decreased the composition range of the amorphous phase to x=20–40 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti 33Zr 33Hf 33) 50(Ni 33Cu 33Ag 33) 40Al 10 with a crystallisation–glass transition temperature difference of T x − T g=103 °C.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/S0022-3093(02)02002-1</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transitions ; Metals. Metallurgy ; Physics ; Specific phase transitions</subject><ispartof>Journal of non-crystalline solids, 2003-03, Vol.317 (1), p.17-22</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</citedby><cites>FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-3093(02)02002-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14546830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, K.B.</creatorcontrib><creatorcontrib>Warren, P.J.</creatorcontrib><creatorcontrib>Cantor, B.</creatorcontrib><title>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</title><title>Journal of non-crystalline solids</title><description>A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10, (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10, (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25 Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys with composition range x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range x=20–70 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range x=20–70 at.%. The most stable amorphous alloy was (Ti 33Zr 33Hf 33) 40(Ni 50Cu 50) 50Al 10 with a crystallisation temperature of T x =545 °C. Addition of Ag decreased the composition range of the amorphous phase to x=20–40 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti 33Zr 33Hf 33) 50(Ni 33Cu 33Ag 33) 40Al 10 with a crystallisation–glass transition temperature difference of T x − T g=103 °C.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transitions</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Specific phase transitions</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgrX6CkI3SQkeTzKOZlZSiVtC68LFwEzJ3EolkJjWZEbrzH_xDv8QZK7r0bg73ch7cg9AhJSeU0Oz0jhDGopjk8YiwMWHdGtEtNKB8GkcJp2wbDX4pu2gvhBfSzTTmA_R4oxpprQH8bGUIWDtfyca4GpsaV61tDLhq5WpVN3h0byb4yU_wQk_wshh_vn-Mlt1p3k7w7LlfZxZ3Zm4d9tGOljaogx8cooeL8_v5Irq-vbyaz64jSHjWRGUKGZO5UryMM17kmmkieQ4EEiVB8gKIlixjJaR5wVRCeQ8ZUCpzXSRFPETHG9-Vd6-tCo2oTABlrayVa4NgU56mWUo6YrohgncheKXFyptK-rWgRPQtiu8WRV-RIEx8tyhopzv6CZABpNVe1mDCnzhJk4zHvf_Zhqe6b9-M8iKAUTWo0ngFjSid-SfpC0lVhng</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Kim, K.B.</creator><creator>Warren, P.J.</creator><creator>Cantor, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030301</creationdate><title>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</title><author>Kim, K.B. ; Warren, P.J. ; Cantor, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d5c62a9ee8d368b9f2f0a89c0c4eaca8bc0fa262dc59b2e4189b2e6c11a9fb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transitions</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, K.B.</creatorcontrib><creatorcontrib>Warren, P.J.</creatorcontrib><creatorcontrib>Cantor, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, K.B.</au><au>Warren, P.J.</au><au>Cantor, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>317</volume><issue>1</issue><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>A wide range of novel multicomponent amorphous alloys have been manufactured by a new method of equiatomic substitution for the early and late transition metals in Zr-based amorphous alloys. (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10, (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10, (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25 Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys with composition range x=20–70 at.% have been prepared by melt-spinning and the range of glass formation characterized by X-ray diffraction and differential scanning calorimetry. Amorphous alloys were formed over the composition range x=20–70 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 50Cu 50) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 50Cu 50) x Al 10 alloys. Addition of Nb with a higher melting point than Ti, Zr and Hf increased the thermal stability of the amorphous phase for the whole composition range x=20–70 at.%. The most stable amorphous alloy was (Ti 33Zr 33Hf 33) 40(Ni 50Cu 50) 50Al 10 with a crystallisation temperature of T x =545 °C. Addition of Ag decreased the composition range of the amorphous phase to x=20–40 at.% for the (Ti 33Zr 33Hf 33) 90− x (Ni 33Cu 33Ag 33) x Al 10 and (Ti 25Zr 25Hf 25Nb 25) 90− x (Ni 33Cu 33Ag 33) x Al 10 alloys. However the amorphous alloy with the largest supercooled liquid region was (Ti 33Zr 33Hf 33) 50(Ni 33Cu 33Ag 33) 40Al 10 with a crystallisation–glass transition temperature difference of T x − T g=103 °C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0022-3093(02)02002-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2003-03, Vol.317 (1), p.17-22
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_27855650
source Elsevier ScienceDirect Journals
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Glass transitions
Metals. Metallurgy
Physics
Specific phase transitions
title Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallic%20glass%20formation%20in%20multicomponent%20(Ti,%20Zr,%20Hf,%20Nb)%E2%80%93(Ni,%20Cu,%20Ag)%E2%80%93Al%20alloys&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Kim,%20K.B.&rft.date=2003-03-01&rft.volume=317&rft.issue=1&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/S0022-3093(02)02002-1&rft_dat=%3Cproquest_cross%3E27855650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27855650&rft_id=info:pmid/&rft_els_id=S0022309302020021&rfr_iscdi=true