Dynamic prediction of milk ultrafiltration performance: A neural network approach
Neural network models were tested in connection with the dynamic prediction of permeate flux ( J P ), total hydraulic resistance ( R T ) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature ( T). This process has complex non-li...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2003-09, Vol.58 (18), p.4185-4195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4195 |
---|---|
container_issue | 18 |
container_start_page | 4185 |
container_title | Chemical engineering science |
container_volume | 58 |
creator | Razavi, S.M.A Mousavi, S.M Mortazavi, S.A |
description | Neural network models were tested in connection with the dynamic prediction of permeate flux (
J
P
), total hydraulic resistance (
R
T
) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature (
T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of
J
P
/
R
T
and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the
R
T
and solutes rejection (except for protein) increased greatly with time at each value of TMP and
T, whereas the
J
P
decreased significantly for the same conditions. Increasing TMP at constant
T led to an increase in the
J
P
,
R
T
and solutes rejection, but increasing
T at constant TMP had no significant effect on the
J
P
,
R
T
and rejection of components. |
doi_str_mv | 10.1016/S0009-2509(03)00301-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27855333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250903003014</els_id><sourcerecordid>27852109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</originalsourceid><addsrcrecordid>eNqNkE1LHEEQhpsQIRvNTwjMJSEeRqune7ZnvIj4DQsiJuemrKnG1vmye1bZf2_vrphjUocqunmqXniE-C7hQIKcH94BQJ0XJdS_QO0DKJC5_iRmsjIq1xrKz2L2gXwRX2N8TE9jJMzE7dmqx85TNgZuPE1-6LPBZZ1vn7JlOwV0ft03_yMHN4QOe-Kj7CTreRmwTWN6HcJThuMYBqSHPbHjsI387X3uij8X579Pr_LFzeX16ckiJ1XXU45VrQm5YMMapGkcSEYyFcAcKyo0GaedAaCqcED1_bwmbaS6bxwqdBrUrvi5vZtin5ccJ9v5SNy22POwjLYwVVmqVP8DFhLqBJZbkMIQY2Bnx-A7DCsrwa5N241pu9ZoQdmNaavT3o_3AIyErQvJkI9_l0sJykCRuOMtx0nLi-dgI3lONhsfmCbbDP4fSW8U-pMG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27852109</pqid></control><display><type>article</type><title>Dynamic prediction of milk ultrafiltration performance: A neural network approach</title><source>Elsevier ScienceDirect Journals</source><creator>Razavi, S.M.A ; Mousavi, S.M ; Mortazavi, S.A</creator><creatorcontrib>Razavi, S.M.A ; Mousavi, S.M ; Mortazavi, S.A</creatorcontrib><description>Neural network models were tested in connection with the dynamic prediction of permeate flux (
J
P
), total hydraulic resistance (
R
T
) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature (
T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of
J
P
/
R
T
and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the
R
T
and solutes rejection (except for protein) increased greatly with time at each value of TMP and
T, whereas the
J
P
decreased significantly for the same conditions. Increasing TMP at constant
T led to an increase in the
J
P
,
R
T
and solutes rejection, but increasing
T at constant TMP had no significant effect on the
J
P
,
R
T
and rejection of components.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(03)00301-4</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Flux ; Food industries ; Food processing ; Fundamental and applied biological sciences. Psychology ; Membrane ; Milk and cheese industries. Ice creams ; Neural network ; Rejection ; Total hydraulic resistance</subject><ispartof>Chemical engineering science, 2003-09, Vol.58 (18), p.4185-4195</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</citedby><cites>FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250903003014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15103702$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Razavi, S.M.A</creatorcontrib><creatorcontrib>Mousavi, S.M</creatorcontrib><creatorcontrib>Mortazavi, S.A</creatorcontrib><title>Dynamic prediction of milk ultrafiltration performance: A neural network approach</title><title>Chemical engineering science</title><description>Neural network models were tested in connection with the dynamic prediction of permeate flux (
J
P
), total hydraulic resistance (
R
T
) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature (
T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of
J
P
/
R
T
and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the
R
T
and solutes rejection (except for protein) increased greatly with time at each value of TMP and
T, whereas the
J
P
decreased significantly for the same conditions. Increasing TMP at constant
T led to an increase in the
J
P
,
R
T
and solutes rejection, but increasing
T at constant TMP had no significant effect on the
J
P
,
R
T
and rejection of components.</description><subject>Biological and medical sciences</subject><subject>Flux</subject><subject>Food industries</subject><subject>Food processing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Membrane</subject><subject>Milk and cheese industries. Ice creams</subject><subject>Neural network</subject><subject>Rejection</subject><subject>Total hydraulic resistance</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LHEEQhpsQIRvNTwjMJSEeRqune7ZnvIj4DQsiJuemrKnG1vmye1bZf2_vrphjUocqunmqXniE-C7hQIKcH94BQJ0XJdS_QO0DKJC5_iRmsjIq1xrKz2L2gXwRX2N8TE9jJMzE7dmqx85TNgZuPE1-6LPBZZ1vn7JlOwV0ft03_yMHN4QOe-Kj7CTreRmwTWN6HcJThuMYBqSHPbHjsI387X3uij8X579Pr_LFzeX16ckiJ1XXU45VrQm5YMMapGkcSEYyFcAcKyo0GaedAaCqcED1_bwmbaS6bxwqdBrUrvi5vZtin5ccJ9v5SNy22POwjLYwVVmqVP8DFhLqBJZbkMIQY2Bnx-A7DCsrwa5N241pu9ZoQdmNaavT3o_3AIyErQvJkI9_l0sJykCRuOMtx0nLi-dgI3lONhsfmCbbDP4fSW8U-pMG</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Razavi, S.M.A</creator><creator>Mousavi, S.M</creator><creator>Mortazavi, S.A</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030901</creationdate><title>Dynamic prediction of milk ultrafiltration performance: A neural network approach</title><author>Razavi, S.M.A ; Mousavi, S.M ; Mortazavi, S.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Flux</topic><topic>Food industries</topic><topic>Food processing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Membrane</topic><topic>Milk and cheese industries. Ice creams</topic><topic>Neural network</topic><topic>Rejection</topic><topic>Total hydraulic resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razavi, S.M.A</creatorcontrib><creatorcontrib>Mousavi, S.M</creatorcontrib><creatorcontrib>Mortazavi, S.A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razavi, S.M.A</au><au>Mousavi, S.M</au><au>Mortazavi, S.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic prediction of milk ultrafiltration performance: A neural network approach</atitle><jtitle>Chemical engineering science</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>58</volume><issue>18</issue><spage>4185</spage><epage>4195</epage><pages>4185-4195</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Neural network models were tested in connection with the dynamic prediction of permeate flux (
J
P
), total hydraulic resistance (
R
T
) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature (
T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of
J
P
/
R
T
and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the
R
T
and solutes rejection (except for protein) increased greatly with time at each value of TMP and
T, whereas the
J
P
decreased significantly for the same conditions. Increasing TMP at constant
T led to an increase in the
J
P
,
R
T
and solutes rejection, but increasing
T at constant TMP had no significant effect on the
J
P
,
R
T
and rejection of components.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(03)00301-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2003-09, Vol.58 (18), p.4185-4195 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_27855333 |
source | Elsevier ScienceDirect Journals |
subjects | Biological and medical sciences Flux Food industries Food processing Fundamental and applied biological sciences. Psychology Membrane Milk and cheese industries. Ice creams Neural network Rejection Total hydraulic resistance |
title | Dynamic prediction of milk ultrafiltration performance: A neural network approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20prediction%20of%20milk%20ultrafiltration%20performance:%20A%20neural%20network%20approach&rft.jtitle=Chemical%20engineering%20science&rft.au=Razavi,%20S.M.A&rft.date=2003-09-01&rft.volume=58&rft.issue=18&rft.spage=4185&rft.epage=4195&rft.pages=4185-4195&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(03)00301-4&rft_dat=%3Cproquest_cross%3E27852109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27852109&rft_id=info:pmid/&rft_els_id=S0009250903003014&rfr_iscdi=true |