Dynamic prediction of milk ultrafiltration performance: A neural network approach

Neural network models were tested in connection with the dynamic prediction of permeate flux ( J P ), total hydraulic resistance ( R T ) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature ( T). This process has complex non-li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2003-09, Vol.58 (18), p.4185-4195
Hauptverfasser: Razavi, S.M.A, Mousavi, S.M, Mortazavi, S.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4195
container_issue 18
container_start_page 4185
container_title Chemical engineering science
container_volume 58
creator Razavi, S.M.A
Mousavi, S.M
Mortazavi, S.A
description Neural network models were tested in connection with the dynamic prediction of permeate flux ( J P ), total hydraulic resistance ( R T ) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature ( T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of J P / R T and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the R T and solutes rejection (except for protein) increased greatly with time at each value of TMP and T, whereas the J P decreased significantly for the same conditions. Increasing TMP at constant T led to an increase in the J P , R T and solutes rejection, but increasing T at constant TMP had no significant effect on the J P , R T and rejection of components.
doi_str_mv 10.1016/S0009-2509(03)00301-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27855333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250903003014</els_id><sourcerecordid>27852109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</originalsourceid><addsrcrecordid>eNqNkE1LHEEQhpsQIRvNTwjMJSEeRqune7ZnvIj4DQsiJuemrKnG1vmye1bZf2_vrphjUocqunmqXniE-C7hQIKcH94BQJ0XJdS_QO0DKJC5_iRmsjIq1xrKz2L2gXwRX2N8TE9jJMzE7dmqx85TNgZuPE1-6LPBZZ1vn7JlOwV0ft03_yMHN4QOe-Kj7CTreRmwTWN6HcJThuMYBqSHPbHjsI387X3uij8X579Pr_LFzeX16ckiJ1XXU45VrQm5YMMapGkcSEYyFcAcKyo0GaedAaCqcED1_bwmbaS6bxwqdBrUrvi5vZtin5ccJ9v5SNy22POwjLYwVVmqVP8DFhLqBJZbkMIQY2Bnx-A7DCsrwa5N241pu9ZoQdmNaavT3o_3AIyErQvJkI9_l0sJykCRuOMtx0nLi-dgI3lONhsfmCbbDP4fSW8U-pMG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27852109</pqid></control><display><type>article</type><title>Dynamic prediction of milk ultrafiltration performance: A neural network approach</title><source>Elsevier ScienceDirect Journals</source><creator>Razavi, S.M.A ; Mousavi, S.M ; Mortazavi, S.A</creator><creatorcontrib>Razavi, S.M.A ; Mousavi, S.M ; Mortazavi, S.A</creatorcontrib><description>Neural network models were tested in connection with the dynamic prediction of permeate flux ( J P ), total hydraulic resistance ( R T ) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature ( T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of J P / R T and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the R T and solutes rejection (except for protein) increased greatly with time at each value of TMP and T, whereas the J P decreased significantly for the same conditions. Increasing TMP at constant T led to an increase in the J P , R T and solutes rejection, but increasing T at constant TMP had no significant effect on the J P , R T and rejection of components.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(03)00301-4</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Flux ; Food industries ; Food processing ; Fundamental and applied biological sciences. Psychology ; Membrane ; Milk and cheese industries. Ice creams ; Neural network ; Rejection ; Total hydraulic resistance</subject><ispartof>Chemical engineering science, 2003-09, Vol.58 (18), p.4185-4195</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</citedby><cites>FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250903003014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15103702$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Razavi, S.M.A</creatorcontrib><creatorcontrib>Mousavi, S.M</creatorcontrib><creatorcontrib>Mortazavi, S.A</creatorcontrib><title>Dynamic prediction of milk ultrafiltration performance: A neural network approach</title><title>Chemical engineering science</title><description>Neural network models were tested in connection with the dynamic prediction of permeate flux ( J P ), total hydraulic resistance ( R T ) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature ( T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of J P / R T and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the R T and solutes rejection (except for protein) increased greatly with time at each value of TMP and T, whereas the J P decreased significantly for the same conditions. Increasing TMP at constant T led to an increase in the J P , R T and solutes rejection, but increasing T at constant TMP had no significant effect on the J P , R T and rejection of components.</description><subject>Biological and medical sciences</subject><subject>Flux</subject><subject>Food industries</subject><subject>Food processing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Membrane</subject><subject>Milk and cheese industries. Ice creams</subject><subject>Neural network</subject><subject>Rejection</subject><subject>Total hydraulic resistance</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LHEEQhpsQIRvNTwjMJSEeRqune7ZnvIj4DQsiJuemrKnG1vmye1bZf2_vrphjUocqunmqXniE-C7hQIKcH94BQJ0XJdS_QO0DKJC5_iRmsjIq1xrKz2L2gXwRX2N8TE9jJMzE7dmqx85TNgZuPE1-6LPBZZ1vn7JlOwV0ft03_yMHN4QOe-Kj7CTreRmwTWN6HcJThuMYBqSHPbHjsI387X3uij8X579Pr_LFzeX16ckiJ1XXU45VrQm5YMMapGkcSEYyFcAcKyo0GaedAaCqcED1_bwmbaS6bxwqdBrUrvi5vZtin5ccJ9v5SNy22POwjLYwVVmqVP8DFhLqBJZbkMIQY2Bnx-A7DCsrwa5N241pu9ZoQdmNaavT3o_3AIyErQvJkI9_l0sJykCRuOMtx0nLi-dgI3lONhsfmCbbDP4fSW8U-pMG</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Razavi, S.M.A</creator><creator>Mousavi, S.M</creator><creator>Mortazavi, S.A</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030901</creationdate><title>Dynamic prediction of milk ultrafiltration performance: A neural network approach</title><author>Razavi, S.M.A ; Mousavi, S.M ; Mortazavi, S.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a894cae2e7e4017df01eac78006a8c24c7f4f700c82f0c9b69c4713bdfa3af403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Flux</topic><topic>Food industries</topic><topic>Food processing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Membrane</topic><topic>Milk and cheese industries. Ice creams</topic><topic>Neural network</topic><topic>Rejection</topic><topic>Total hydraulic resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razavi, S.M.A</creatorcontrib><creatorcontrib>Mousavi, S.M</creatorcontrib><creatorcontrib>Mortazavi, S.A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razavi, S.M.A</au><au>Mousavi, S.M</au><au>Mortazavi, S.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic prediction of milk ultrafiltration performance: A neural network approach</atitle><jtitle>Chemical engineering science</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>58</volume><issue>18</issue><spage>4185</spage><epage>4195</epage><pages>4185-4195</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Neural network models were tested in connection with the dynamic prediction of permeate flux ( J P ), total hydraulic resistance ( R T ) and the solutes rejection for the crossflow ultrafiltration of milk at different transmembrane pressure (TMP) and temperature ( T). This process has complex non-linear dependencies on the operating conditions. Thus it provides demanding test of the neural network approach to the process variables prediction. Two neural network models with single hidden layer were constructed to predict the time dependent rate of J P / R T and rejections from a limited number of training data. The modelling results showed that there is an excellent agreement between the experimental data and predicted values, with average errors less than 1%. The experimental results showed that the R T and solutes rejection (except for protein) increased greatly with time at each value of TMP and T, whereas the J P decreased significantly for the same conditions. Increasing TMP at constant T led to an increase in the J P , R T and solutes rejection, but increasing T at constant TMP had no significant effect on the J P , R T and rejection of components.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(03)00301-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2003-09, Vol.58 (18), p.4185-4195
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_27855333
source Elsevier ScienceDirect Journals
subjects Biological and medical sciences
Flux
Food industries
Food processing
Fundamental and applied biological sciences. Psychology
Membrane
Milk and cheese industries. Ice creams
Neural network
Rejection
Total hydraulic resistance
title Dynamic prediction of milk ultrafiltration performance: A neural network approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20prediction%20of%20milk%20ultrafiltration%20performance:%20A%20neural%20network%20approach&rft.jtitle=Chemical%20engineering%20science&rft.au=Razavi,%20S.M.A&rft.date=2003-09-01&rft.volume=58&rft.issue=18&rft.spage=4185&rft.epage=4195&rft.pages=4185-4195&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(03)00301-4&rft_dat=%3Cproquest_cross%3E27852109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27852109&rft_id=info:pmid/&rft_els_id=S0009250903003014&rfr_iscdi=true