Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions

We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2003-03, Vol.51 (3), p.461-486
Hauptverfasser: Roy Xu, L., Y. Huang, Yonggang, Rosakis, Ares J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 3
container_start_page 461
container_title Journal of the mechanics and physics of solids
container_volume 51
creator Roy Xu, L.
Y. Huang, Yonggang
Rosakis, Ares J.
description We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.
doi_str_mv 10.1016/S0022-5096(02)00080-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27853640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509602000807</els_id><sourcerecordid>27853640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f1de194f4a42aa93cbfab091ddd265d3f839173854b63f7c3f9dade8c8ff93be3</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRV2ARAh8ApIbEBQL9nqfNAiFpxSJAqitWXsMhn1hbxARP4-TjaCk8thz71zPIeSAs1POeHb2yFgcRykrs2MWnzDGChblW2Ty-7xDdr1_C42U5XxCvq-WLTRWUeVAvVONpkY12K6l0GraY4uDg_E-UNsO6Awo9KGkr13TvQRBt_C0gdCxUPtzil99KBtsB6ipHxbaBvlqWNNprGnvUNt1gt8j2yZYcH9zTsnzzfXT7C6aP9zezy7nkRJZMUSGa-RlYhJIYoBSqMpAxUqutY6zVAtTiJLnokiTKhMmV8KUGjQWqjCmFBWKKTka5_au-1igH2RjvcK6hvXnZZwXqcgSFoTpKFSu896hkX3YBNxSciZXeOUar1xxlCyWa7wyD77DTQB4BbVx0Crr_8xJwgPsNOguRh2GbT8tOumVxVYFIi5Ql7qz_yT9ANWNlMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27853640</pqid></control><display><type>article</type><title>Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Roy Xu, L. ; Y. Huang, Yonggang ; Rosakis, Ares J.</creator><creatorcontrib>Roy Xu, L. ; Y. Huang, Yonggang ; Rosakis, Ares J.</creatorcontrib><description>We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/S0022-5096(02)00080-7</identifier><identifier>CODEN: JMPSA8</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Dynamic fracture ; A. Energy release rate ; B. Layered material ; C. Impact test ; Condensed matter: structure, mechanical and thermal properties ; Crack deflection and penetration ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics</subject><ispartof>Journal of the mechanics and physics of solids, 2003-03, Vol.51 (3), p.461-486</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f1de194f4a42aa93cbfab091ddd265d3f839173854b63f7c3f9dade8c8ff93be3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-5096(02)00080-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14410715$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy Xu, L.</creatorcontrib><creatorcontrib>Y. Huang, Yonggang</creatorcontrib><creatorcontrib>Rosakis, Ares J.</creatorcontrib><title>Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions</title><title>Journal of the mechanics and physics of solids</title><description>We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.</description><subject>A. Dynamic fracture</subject><subject>A. Energy release rate</subject><subject>B. Layered material</subject><subject>C. Impact test</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crack deflection and penetration</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRV2ARAh8ApIbEBQL9nqfNAiFpxSJAqitWXsMhn1hbxARP4-TjaCk8thz71zPIeSAs1POeHb2yFgcRykrs2MWnzDGChblW2Ty-7xDdr1_C42U5XxCvq-WLTRWUeVAvVONpkY12K6l0GraY4uDg_E-UNsO6Awo9KGkr13TvQRBt_C0gdCxUPtzil99KBtsB6ipHxbaBvlqWNNprGnvUNt1gt8j2yZYcH9zTsnzzfXT7C6aP9zezy7nkRJZMUSGa-RlYhJIYoBSqMpAxUqutY6zVAtTiJLnokiTKhMmV8KUGjQWqjCmFBWKKTka5_au-1igH2RjvcK6hvXnZZwXqcgSFoTpKFSu896hkX3YBNxSciZXeOUar1xxlCyWa7wyD77DTQB4BbVx0Crr_8xJwgPsNOguRh2GbT8tOumVxVYFIi5Ql7qz_yT9ANWNlMg</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Roy Xu, L.</creator><creator>Y. Huang, Yonggang</creator><creator>Rosakis, Ares J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20030301</creationdate><title>Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions</title><author>Roy Xu, L. ; Y. Huang, Yonggang ; Rosakis, Ares J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f1de194f4a42aa93cbfab091ddd265d3f839173854b63f7c3f9dade8c8ff93be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>A. Dynamic fracture</topic><topic>A. Energy release rate</topic><topic>B. Layered material</topic><topic>C. Impact test</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crack deflection and penetration</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy Xu, L.</creatorcontrib><creatorcontrib>Y. Huang, Yonggang</creatorcontrib><creatorcontrib>Rosakis, Ares J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy Xu, L.</au><au>Y. Huang, Yonggang</au><au>Rosakis, Ares J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>51</volume><issue>3</issue><spage>461</spage><epage>486</epage><pages>461-486</pages><issn>0022-5096</issn><coden>JMPSA8</coden><abstract>We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0022-5096(02)00080-7</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2003-03, Vol.51 (3), p.461-486
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_27853640
source ScienceDirect Journals (5 years ago - present)
subjects A. Dynamic fracture
A. Energy release rate
B. Layered material
C. Impact test
Condensed matter: structure, mechanical and thermal properties
Crack deflection and penetration
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
title Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20crack%20deflection%20and%20penetration%20at%20interfaces%20in%20homogeneous%20materials:%20experimental%20studies%20and%20model%20predictions&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Roy%20Xu,%20L.&rft.date=2003-03-01&rft.volume=51&rft.issue=3&rft.spage=461&rft.epage=486&rft.pages=461-486&rft.issn=0022-5096&rft.coden=JMPSA8&rft_id=info:doi/10.1016/S0022-5096(02)00080-7&rft_dat=%3Cproquest_cross%3E27853640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27853640&rft_id=info:pmid/&rft_els_id=S0022509602000807&rfr_iscdi=true