Multiscale resolution of fluidized-bed pressure fluctuations
Pressure fluctuation signals measured from four different axial locations in a bubbling bed 0.3 m in diameter and 3 m in height were analyzed using multiple approaches, including wavelet transform, Hurst analysis, multiscale resolution, and time‐delay embedding. After examining decomposition residua...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2003-04, Vol.49 (4), p.869-882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 4 |
container_start_page | 869 |
container_title | AIChE journal |
container_volume | 49 |
creator | Zhao, Gui-Bing Yang, Yong-Rong |
description | Pressure fluctuation signals measured from four different axial locations in a bubbling bed 0.3 m in diameter and 3 m in height were analyzed using multiple approaches, including wavelet transform, Hurst analysis, multiscale resolution, and time‐delay embedding. After examining decomposition residuals using different compact support Daubechies wavelets, the Daubechies second‐order wavelet was chosen as an optimal wavelet for decomposing pressure signals. Hurst analysis of the decomposed signals shows that the measured pressure fluctuations can be resolved to three characteristic scales: bifractal mesoscale signals with two distinct Hurst exponents; monofractal micro‐ and macroscale signals with only one characteristic Hurst exponent. Energy profiles of the three scale components confirm that the measured pressure signals mainly reflect the mesoscale component. Time‐delay embedding analysis of three scale signals demonstrates that the microscale dynamics is more complex than the mesoscale dynamics, and the mesoscale dynamics is more complex than the macroscale dynamics. That this result cannot be found solely from Hurst analysis shows the importance of integrating multiple approaches for characterizing the complexity of fluidized systems. |
doi_str_mv | 10.1002/aic.690490407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27852505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>341435421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5127-790ab175f004fbfa7219d6697105e4995919e3974916838cb8ae40ba11218af23</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKdH70PQW2de2zR94GUON-fPy3THkLYJZHbtTFp0_vVmbEzxIARCXj7v-77vS8gp0D5QGl5Kk_cTpLE_lO-RDrCYBwwp2ycdSikEvgCH5Mi5uX-FPA075OqxLRvjclmqnlWuLtvG1FWv1j1dtqYwX6oIMlX0lv7TtVaty3nTyjXljsmBlqVTJ9u7S15GN9PhbfDwPJ4MBw9BzvyYgCOVGXCmKY11piUPAYskQQ6UqRiRIaCKkMcISRqleZZKFdNMAoSQSh1GXXKx0V3a-r1VrhELb1mVpaxU3TrhV2Eho8yDZ3_Aed3aynsTgBjFEQB6KNhAua2ds0qLpTULaVcCqFgHKXyQYhek58-3onKdk7ayyo37aYoTxBBTz_EN92FKtfpfVAwmw98Tto6Ma9TnrlPaN5HwiDMxexqL6fg6uZuN7sVr9A3fIJDm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199343119</pqid></control><display><type>article</type><title>Multiscale resolution of fluidized-bed pressure fluctuations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Gui-Bing ; Yang, Yong-Rong</creator><creatorcontrib>Zhao, Gui-Bing ; Yang, Yong-Rong</creatorcontrib><description>Pressure fluctuation signals measured from four different axial locations in a bubbling bed 0.3 m in diameter and 3 m in height were analyzed using multiple approaches, including wavelet transform, Hurst analysis, multiscale resolution, and time‐delay embedding. After examining decomposition residuals using different compact support Daubechies wavelets, the Daubechies second‐order wavelet was chosen as an optimal wavelet for decomposing pressure signals. Hurst analysis of the decomposed signals shows that the measured pressure fluctuations can be resolved to three characteristic scales: bifractal mesoscale signals with two distinct Hurst exponents; monofractal micro‐ and macroscale signals with only one characteristic Hurst exponent. Energy profiles of the three scale components confirm that the measured pressure signals mainly reflect the mesoscale component. Time‐delay embedding analysis of three scale signals demonstrates that the microscale dynamics is more complex than the mesoscale dynamics, and the mesoscale dynamics is more complex than the macroscale dynamics. That this result cannot be found solely from Hurst analysis shows the importance of integrating multiple approaches for characterizing the complexity of fluidized systems.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690490407</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Fluidization</subject><ispartof>AIChE journal, 2003-04, Vol.49 (4), p.869-882</ispartof><rights>Copyright © 2003 American Institute of Chemical Engineers (AIChE)</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Apr 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5127-790ab175f004fbfa7219d6697105e4995919e3974916838cb8ae40ba11218af23</citedby><cites>FETCH-LOGICAL-c5127-790ab175f004fbfa7219d6697105e4995919e3974916838cb8ae40ba11218af23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690490407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690490407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14699298$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Gui-Bing</creatorcontrib><creatorcontrib>Yang, Yong-Rong</creatorcontrib><title>Multiscale resolution of fluidized-bed pressure fluctuations</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Pressure fluctuation signals measured from four different axial locations in a bubbling bed 0.3 m in diameter and 3 m in height were analyzed using multiple approaches, including wavelet transform, Hurst analysis, multiscale resolution, and time‐delay embedding. After examining decomposition residuals using different compact support Daubechies wavelets, the Daubechies second‐order wavelet was chosen as an optimal wavelet for decomposing pressure signals. Hurst analysis of the decomposed signals shows that the measured pressure fluctuations can be resolved to three characteristic scales: bifractal mesoscale signals with two distinct Hurst exponents; monofractal micro‐ and macroscale signals with only one characteristic Hurst exponent. Energy profiles of the three scale components confirm that the measured pressure signals mainly reflect the mesoscale component. Time‐delay embedding analysis of three scale signals demonstrates that the microscale dynamics is more complex than the mesoscale dynamics, and the mesoscale dynamics is more complex than the macroscale dynamics. That this result cannot be found solely from Hurst analysis shows the importance of integrating multiple approaches for characterizing the complexity of fluidized systems.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM9LwzAUx4MoOKdH70PQW2de2zR94GUON-fPy3THkLYJZHbtTFp0_vVmbEzxIARCXj7v-77vS8gp0D5QGl5Kk_cTpLE_lO-RDrCYBwwp2ycdSikEvgCH5Mi5uX-FPA075OqxLRvjclmqnlWuLtvG1FWv1j1dtqYwX6oIMlX0lv7TtVaty3nTyjXljsmBlqVTJ9u7S15GN9PhbfDwPJ4MBw9BzvyYgCOVGXCmKY11piUPAYskQQ6UqRiRIaCKkMcISRqleZZKFdNMAoSQSh1GXXKx0V3a-r1VrhELb1mVpaxU3TrhV2Eho8yDZ3_Aed3aynsTgBjFEQB6KNhAua2ds0qLpTULaVcCqFgHKXyQYhek58-3onKdk7ayyo37aYoTxBBTz_EN92FKtfpfVAwmw98Tto6Ma9TnrlPaN5HwiDMxexqL6fg6uZuN7sVr9A3fIJDm</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Zhao, Gui-Bing</creator><creator>Yang, Yong-Rong</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>200304</creationdate><title>Multiscale resolution of fluidized-bed pressure fluctuations</title><author>Zhao, Gui-Bing ; Yang, Yong-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5127-790ab175f004fbfa7219d6697105e4995919e3974916838cb8ae40ba11218af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Gui-Bing</creatorcontrib><creatorcontrib>Yang, Yong-Rong</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Gui-Bing</au><au>Yang, Yong-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale resolution of fluidized-bed pressure fluctuations</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2003-04</date><risdate>2003</risdate><volume>49</volume><issue>4</issue><spage>869</spage><epage>882</epage><pages>869-882</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Pressure fluctuation signals measured from four different axial locations in a bubbling bed 0.3 m in diameter and 3 m in height were analyzed using multiple approaches, including wavelet transform, Hurst analysis, multiscale resolution, and time‐delay embedding. After examining decomposition residuals using different compact support Daubechies wavelets, the Daubechies second‐order wavelet was chosen as an optimal wavelet for decomposing pressure signals. Hurst analysis of the decomposed signals shows that the measured pressure fluctuations can be resolved to three characteristic scales: bifractal mesoscale signals with two distinct Hurst exponents; monofractal micro‐ and macroscale signals with only one characteristic Hurst exponent. Energy profiles of the three scale components confirm that the measured pressure signals mainly reflect the mesoscale component. Time‐delay embedding analysis of three scale signals demonstrates that the microscale dynamics is more complex than the mesoscale dynamics, and the mesoscale dynamics is more complex than the macroscale dynamics. That this result cannot be found solely from Hurst analysis shows the importance of integrating multiple approaches for characterizing the complexity of fluidized systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690490407</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2003-04, Vol.49 (4), p.869-882 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_27852505 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Chemical engineering Exact sciences and technology Fluidization |
title | Multiscale resolution of fluidized-bed pressure fluctuations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20resolution%20of%20fluidized-bed%20pressure%20fluctuations&rft.jtitle=AIChE%20journal&rft.au=Zhao,%20Gui-Bing&rft.date=2003-04&rft.volume=49&rft.issue=4&rft.spage=869&rft.epage=882&rft.pages=869-882&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690490407&rft_dat=%3Cproquest_cross%3E341435421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199343119&rft_id=info:pmid/&rfr_iscdi=true |