Fabrication of hydroxyapatite‐based nano‐gold and nano‐silver‐doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties

In this study, nano‐gold (nAu) and nano‐silver (nAg) were doped at the molar ratios of Molar5–Molar30 to the Hydroxyapatite (HAp)‐based bioceramic bone graft synthesized by the sol–gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2023-07, Vol.111 (7), p.1386-1397
Hauptverfasser: Demirel, M., Aslan, N., Aksakal, B., Arslan, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 7
container_start_page 1386
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 111
creator Demirel, M.
Aslan, N.
Aksakal, B.
Arslan, M. E.
description In this study, nano‐gold (nAu) and nano‐silver (nAg) were doped at the molar ratios of Molar5–Molar30 to the Hydroxyapatite (HAp)‐based bioceramic bone graft synthesized by the sol–gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM–EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp‐nAu5 grafts did not show toxicological properties at any concentration, while HAp‐nAg5 among the nAg‐containing grafts gave the best results at the 200–100 μg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu‐containing grafts showed toxicological properties in the concentration range of 200–50 μg/mL and nAg‐containing grafts in the concentration range of 200–100 μg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg‐doped bone grafts gave higher total MN, L, and N amounts compared to the nAu‐doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg‐doped bone grafts.
doi_str_mv 10.1002/jbm.b.35242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2785201272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811224129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3602-7bfc2d7c78d2b792dd15c43b45073e8a01595d26c91658623ea7428ba23ea3ef3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIg9YsUeW2CAlM7TL7X5kR6KEh4LYwNryozrxqNse7O5A7_gEfoVf4kvw0GEWLFjVraqjWyVdQp6xYs2KAl5t9LDWay6ghAfkkAkBq7Jt2MO9rvkBOUppk-GqEPwxOeBV07KW8UPy80rp6IwaXfA0dPR2tjF8m9U2T0b89f2HVgkt9cqH3NyE3lLl931y_R3GLGzYZkq7YDCqwRmqg0d6E1U3pjN66W-VNxkY0GQV0hgnM04RT6nBvqd3TmnXu3E-Xcwn06OKVGkf4qB2C7qN-UIcHaYn5FGn-oRP7-sx-Xx1-eni7er645t3F6-vV4ZXBaxq3RmwtakbC7puwVomTMl1KYqaY6MKJlphoTItq0RTAUdVl9BotVMcO35MXi6--fSXCdMoB5d27yqPYUoS6kZAwaCGjL74B92EKfr8nYSGMYCSQZupk4UyMaQUsZPb6AYVZ8kKuUtS5iSlln-SzPTze89JD2j37N_oMgAL8NX1OP_PS74__3C-uP4G5gCw7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811224129</pqid></control><display><type>article</type><title>Fabrication of hydroxyapatite‐based nano‐gold and nano‐silver‐doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Demirel, M. ; Aslan, N. ; Aksakal, B. ; Arslan, M. E.</creator><creatorcontrib>Demirel, M. ; Aslan, N. ; Aksakal, B. ; Arslan, M. E.</creatorcontrib><description>In this study, nano‐gold (nAu) and nano‐silver (nAg) were doped at the molar ratios of Molar5–Molar30 to the Hydroxyapatite (HAp)‐based bioceramic bone graft synthesized by the sol–gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM–EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp‐nAu5 grafts did not show toxicological properties at any concentration, while HAp‐nAg5 among the nAg‐containing grafts gave the best results at the 200–100 μg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu‐containing grafts showed toxicological properties in the concentration range of 200–50 μg/mL and nAg‐containing grafts in the concentration range of 200–100 μg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg‐doped bone grafts gave higher total MN, L, and N amounts compared to the nAu‐doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg‐doped bone grafts.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35242</identifier><identifier>PMID: 36891913</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>bioceramic ; Bioceramics ; Biocompatibility ; biograft ; Biomedical materials ; Bone grafts ; Cell Survival ; Cell viability ; Cytotoxicity ; Durapatite - chemistry ; Durapatite - pharmacology ; Fabrication ; Fibroblasts ; Gold ; Grafting ; Grafts ; Human performance ; Humans ; Hydroxyapatite ; Materials research ; Materials science ; Mechanical tests ; nano‐gold ; nano‐silver ; nuclear abnormality ; Silver ; Skin &amp; tissue grafts ; Sol-gel processes ; Substitute bone ; Toxicity</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2023-07, Vol.111 (7), p.1386-1397</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3602-7bfc2d7c78d2b792dd15c43b45073e8a01595d26c91658623ea7428ba23ea3ef3</citedby><cites>FETCH-LOGICAL-c3602-7bfc2d7c78d2b792dd15c43b45073e8a01595d26c91658623ea7428ba23ea3ef3</cites><orcidid>0000-0003-4844-9387 ; 0000-0002-1159-1673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.35242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.35242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36891913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demirel, M.</creatorcontrib><creatorcontrib>Aslan, N.</creatorcontrib><creatorcontrib>Aksakal, B.</creatorcontrib><creatorcontrib>Arslan, M. E.</creatorcontrib><title>Fabrication of hydroxyapatite‐based nano‐gold and nano‐silver‐doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>In this study, nano‐gold (nAu) and nano‐silver (nAg) were doped at the molar ratios of Molar5–Molar30 to the Hydroxyapatite (HAp)‐based bioceramic bone graft synthesized by the sol–gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM–EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp‐nAu5 grafts did not show toxicological properties at any concentration, while HAp‐nAg5 among the nAg‐containing grafts gave the best results at the 200–100 μg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu‐containing grafts showed toxicological properties in the concentration range of 200–50 μg/mL and nAg‐containing grafts in the concentration range of 200–100 μg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg‐doped bone grafts gave higher total MN, L, and N amounts compared to the nAu‐doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg‐doped bone grafts.</description><subject>bioceramic</subject><subject>Bioceramics</subject><subject>Biocompatibility</subject><subject>biograft</subject><subject>Biomedical materials</subject><subject>Bone grafts</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Cytotoxicity</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Fabrication</subject><subject>Fibroblasts</subject><subject>Gold</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Human performance</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical tests</subject><subject>nano‐gold</subject><subject>nano‐silver</subject><subject>nuclear abnormality</subject><subject>Silver</subject><subject>Skin &amp; tissue grafts</subject><subject>Sol-gel processes</subject><subject>Substitute bone</subject><subject>Toxicity</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIg9YsUeW2CAlM7TL7X5kR6KEh4LYwNryozrxqNse7O5A7_gEfoVf4kvw0GEWLFjVraqjWyVdQp6xYs2KAl5t9LDWay6ghAfkkAkBq7Jt2MO9rvkBOUppk-GqEPwxOeBV07KW8UPy80rp6IwaXfA0dPR2tjF8m9U2T0b89f2HVgkt9cqH3NyE3lLl931y_R3GLGzYZkq7YDCqwRmqg0d6E1U3pjN66W-VNxkY0GQV0hgnM04RT6nBvqd3TmnXu3E-Xcwn06OKVGkf4qB2C7qN-UIcHaYn5FGn-oRP7-sx-Xx1-eni7er645t3F6-vV4ZXBaxq3RmwtakbC7puwVomTMl1KYqaY6MKJlphoTItq0RTAUdVl9BotVMcO35MXi6--fSXCdMoB5d27yqPYUoS6kZAwaCGjL74B92EKfr8nYSGMYCSQZupk4UyMaQUsZPb6AYVZ8kKuUtS5iSlln-SzPTze89JD2j37N_oMgAL8NX1OP_PS74__3C-uP4G5gCw7g</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Demirel, M.</creator><creator>Aslan, N.</creator><creator>Aksakal, B.</creator><creator>Arslan, M. E.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4844-9387</orcidid><orcidid>https://orcid.org/0000-0002-1159-1673</orcidid></search><sort><creationdate>202307</creationdate><title>Fabrication of hydroxyapatite‐based nano‐gold and nano‐silver‐doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties</title><author>Demirel, M. ; Aslan, N. ; Aksakal, B. ; Arslan, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3602-7bfc2d7c78d2b792dd15c43b45073e8a01595d26c91658623ea7428ba23ea3ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bioceramic</topic><topic>Bioceramics</topic><topic>Biocompatibility</topic><topic>biograft</topic><topic>Biomedical materials</topic><topic>Bone grafts</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Cytotoxicity</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Fabrication</topic><topic>Fibroblasts</topic><topic>Gold</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Human performance</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical tests</topic><topic>nano‐gold</topic><topic>nano‐silver</topic><topic>nuclear abnormality</topic><topic>Silver</topic><topic>Skin &amp; tissue grafts</topic><topic>Sol-gel processes</topic><topic>Substitute bone</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirel, M.</creatorcontrib><creatorcontrib>Aslan, N.</creatorcontrib><creatorcontrib>Aksakal, B.</creatorcontrib><creatorcontrib>Arslan, M. E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirel, M.</au><au>Aslan, N.</au><au>Aksakal, B.</au><au>Arslan, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of hydroxyapatite‐based nano‐gold and nano‐silver‐doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2023-07</date><risdate>2023</risdate><volume>111</volume><issue>7</issue><spage>1386</spage><epage>1397</epage><pages>1386-1397</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>In this study, nano‐gold (nAu) and nano‐silver (nAg) were doped at the molar ratios of Molar5–Molar30 to the Hydroxyapatite (HAp)‐based bioceramic bone graft synthesized by the sol–gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM–EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp‐nAu5 grafts did not show toxicological properties at any concentration, while HAp‐nAg5 among the nAg‐containing grafts gave the best results at the 200–100 μg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu‐containing grafts showed toxicological properties in the concentration range of 200–50 μg/mL and nAg‐containing grafts in the concentration range of 200–100 μg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg‐doped bone grafts gave higher total MN, L, and N amounts compared to the nAu‐doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg‐doped bone grafts.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36891913</pmid><doi>10.1002/jbm.b.35242</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4844-9387</orcidid><orcidid>https://orcid.org/0000-0002-1159-1673</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2023-07, Vol.111 (7), p.1386-1397
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2785201272
source MEDLINE; Wiley Online Library All Journals
subjects bioceramic
Bioceramics
Biocompatibility
biograft
Biomedical materials
Bone grafts
Cell Survival
Cell viability
Cytotoxicity
Durapatite - chemistry
Durapatite - pharmacology
Fabrication
Fibroblasts
Gold
Grafting
Grafts
Human performance
Humans
Hydroxyapatite
Materials research
Materials science
Mechanical tests
nano‐gold
nano‐silver
nuclear abnormality
Silver
Skin & tissue grafts
Sol-gel processes
Substitute bone
Toxicity
title Fabrication of hydroxyapatite‐based nano‐gold and nano‐silver‐doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20hydroxyapatite%E2%80%90based%20nano%E2%80%90gold%20and%20nano%E2%80%90silver%E2%80%90doped%20bioceramic%20bone%20grafts:%20Enhanced%20mechanostructure,%20cell%20viability,%20and%20nuclear%20abnormality%20properties&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Demirel,%20M.&rft.date=2023-07&rft.volume=111&rft.issue=7&rft.spage=1386&rft.epage=1397&rft.pages=1386-1397&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35242&rft_dat=%3Cproquest_cross%3E2811224129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811224129&rft_id=info:pmid/36891913&rfr_iscdi=true