Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication
Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompani...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2023-05, Vol.296, p.122074-122074, Article 122074 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122074 |
---|---|
container_issue | |
container_start_page | 122074 |
container_title | Biomaterials |
container_volume | 296 |
creator | Zong, Lingqing Yu, Yang Wang, Junhao Liu, Peilai Feng, Wei Dai, Xinyue Chen, Liang Gunawan, Cindy Jimmy Yun, Sung Lai Amal, Rose Cheong, Soshan Gu, Zi Chen, Yu |
description | Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.
[Display omitted] |
doi_str_mv | 10.1016/j.biomaterials.2023.122074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2785197425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961223000820</els_id><sourcerecordid>2785197425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhL6CIE5cstmPHDjfU8iUV9QISN8sfk62XxF5sp5D_wI_GyxbEDU6WR887o5kHoWcEbwkm_Yv91vg46wLJ6ylvKabdllCKBbuHNkQK2fIB8_togwmj7dATeoYe5bzH9Y8ZfYjOul7KgTC-QT-uv687CO2ttjrYtU3e3jRznFbjICxzY3Uy3kHz4TMEaIIOMUD5FtOX3IwxNctUks5xCa4tye92kMA1OriaO5Ql-bBrIdzUzrWcY4hWFz2txdvGaPtrgQaSdr7WfQyP0YOxbgRP7t5z9OnN648X79qr67fvL15dtZaRrrRESGbHQfd8HDU3lkk6sBEwkdxZoNY56Afa8R5Yb5gwIx4M753BowTRAXTn6Pmp7yHFrwvkomafLUyTDhCXrDrCOyE6OYh_olRITgbBKK_oyxNqU8w5wagOyc86rYpgdRSn9upvceooTp3E1fDTuzmLmcH9if42VYHLEwD1MLceksrWw_GwPoEtykX_P3N-AqwetU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785197425</pqid></control><display><type>article</type><title>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zong, Lingqing ; Yu, Yang ; Wang, Junhao ; Liu, Peilai ; Feng, Wei ; Dai, Xinyue ; Chen, Liang ; Gunawan, Cindy ; Jimmy Yun, Sung Lai ; Amal, Rose ; Cheong, Soshan ; Gu, Zi ; Chen, Yu</creator><creatorcontrib>Zong, Lingqing ; Yu, Yang ; Wang, Junhao ; Liu, Peilai ; Feng, Wei ; Dai, Xinyue ; Chen, Liang ; Gunawan, Cindy ; Jimmy Yun, Sung Lai ; Amal, Rose ; Cheong, Soshan ; Gu, Zi ; Chen, Yu</creatorcontrib><description>Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.
[Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2023.122074</identifier><identifier>PMID: 36889145</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antimicrobial properties ; Bacteria ; Bacteria capturing ; Bacterial Infections ; biocompatibility ; biocompatible materials ; biosafety ; fever ; homeostasis ; Humans ; Hyperthermia, Induced ; irradiation ; molybdenum ; Molybdenum - chemistry ; Molybdenum - pharmacology ; multiple drug resistance ; MXene heterostructure ; nanotechnology ; Oxygen ; peptides ; photochemotherapy ; phototoxicity ; public health ; reactive oxygen species ; RNA ; sonocatalysis ; Sonodynamic therapy ; Synergistic antibacterial activity ; ultrasonics</subject><ispartof>Biomaterials, 2023-05, Vol.296, p.122074-122074, Article 122074</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</citedby><cites>FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</cites><orcidid>0000-0001-6133-0829 ; 0000-0002-1176-9267 ; 0000-0002-8206-3325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2023.122074$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36889145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Lingqing</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Wang, Junhao</creatorcontrib><creatorcontrib>Liu, Peilai</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Dai, Xinyue</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Gunawan, Cindy</creatorcontrib><creatorcontrib>Jimmy Yun, Sung Lai</creatorcontrib><creatorcontrib>Amal, Rose</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Gu, Zi</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.
[Display omitted]</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antimicrobial properties</subject><subject>Bacteria</subject><subject>Bacteria capturing</subject><subject>Bacterial Infections</subject><subject>biocompatibility</subject><subject>biocompatible materials</subject><subject>biosafety</subject><subject>fever</subject><subject>homeostasis</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>irradiation</subject><subject>molybdenum</subject><subject>Molybdenum - chemistry</subject><subject>Molybdenum - pharmacology</subject><subject>multiple drug resistance</subject><subject>MXene heterostructure</subject><subject>nanotechnology</subject><subject>Oxygen</subject><subject>peptides</subject><subject>photochemotherapy</subject><subject>phototoxicity</subject><subject>public health</subject><subject>reactive oxygen species</subject><subject>RNA</subject><subject>sonocatalysis</subject><subject>Sonodynamic therapy</subject><subject>Synergistic antibacterial activity</subject><subject>ultrasonics</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhL6CIE5cstmPHDjfU8iUV9QISN8sfk62XxF5sp5D_wI_GyxbEDU6WR887o5kHoWcEbwkm_Yv91vg46wLJ6ylvKabdllCKBbuHNkQK2fIB8_togwmj7dATeoYe5bzH9Y8ZfYjOul7KgTC-QT-uv687CO2ttjrYtU3e3jRznFbjICxzY3Uy3kHz4TMEaIIOMUD5FtOX3IwxNctUks5xCa4tye92kMA1OriaO5Ql-bBrIdzUzrWcY4hWFz2txdvGaPtrgQaSdr7WfQyP0YOxbgRP7t5z9OnN648X79qr67fvL15dtZaRrrRESGbHQfd8HDU3lkk6sBEwkdxZoNY56Afa8R5Yb5gwIx4M753BowTRAXTn6Pmp7yHFrwvkomafLUyTDhCXrDrCOyE6OYh_olRITgbBKK_oyxNqU8w5wagOyc86rYpgdRSn9upvceooTp3E1fDTuzmLmcH9if42VYHLEwD1MLceksrWw_GwPoEtykX_P3N-AqwetU8</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zong, Lingqing</creator><creator>Yu, Yang</creator><creator>Wang, Junhao</creator><creator>Liu, Peilai</creator><creator>Feng, Wei</creator><creator>Dai, Xinyue</creator><creator>Chen, Liang</creator><creator>Gunawan, Cindy</creator><creator>Jimmy Yun, Sung Lai</creator><creator>Amal, Rose</creator><creator>Cheong, Soshan</creator><creator>Gu, Zi</creator><creator>Chen, Yu</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6133-0829</orcidid><orcidid>https://orcid.org/0000-0002-1176-9267</orcidid><orcidid>https://orcid.org/0000-0002-8206-3325</orcidid></search><sort><creationdate>202305</creationdate><title>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</title><author>Zong, Lingqing ; Yu, Yang ; Wang, Junhao ; Liu, Peilai ; Feng, Wei ; Dai, Xinyue ; Chen, Liang ; Gunawan, Cindy ; Jimmy Yun, Sung Lai ; Amal, Rose ; Cheong, Soshan ; Gu, Zi ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antimicrobial properties</topic><topic>Bacteria</topic><topic>Bacteria capturing</topic><topic>Bacterial Infections</topic><topic>biocompatibility</topic><topic>biocompatible materials</topic><topic>biosafety</topic><topic>fever</topic><topic>homeostasis</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>irradiation</topic><topic>molybdenum</topic><topic>Molybdenum - chemistry</topic><topic>Molybdenum - pharmacology</topic><topic>multiple drug resistance</topic><topic>MXene heterostructure</topic><topic>nanotechnology</topic><topic>Oxygen</topic><topic>peptides</topic><topic>photochemotherapy</topic><topic>phototoxicity</topic><topic>public health</topic><topic>reactive oxygen species</topic><topic>RNA</topic><topic>sonocatalysis</topic><topic>Sonodynamic therapy</topic><topic>Synergistic antibacterial activity</topic><topic>ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Lingqing</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Wang, Junhao</creatorcontrib><creatorcontrib>Liu, Peilai</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Dai, Xinyue</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Gunawan, Cindy</creatorcontrib><creatorcontrib>Jimmy Yun, Sung Lai</creatorcontrib><creatorcontrib>Amal, Rose</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Gu, Zi</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zong, Lingqing</au><au>Yu, Yang</au><au>Wang, Junhao</au><au>Liu, Peilai</au><au>Feng, Wei</au><au>Dai, Xinyue</au><au>Chen, Liang</au><au>Gunawan, Cindy</au><au>Jimmy Yun, Sung Lai</au><au>Amal, Rose</au><au>Cheong, Soshan</au><au>Gu, Zi</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2023-05</date><risdate>2023</risdate><volume>296</volume><spage>122074</spage><epage>122074</epage><pages>122074-122074</pages><artnum>122074</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>36889145</pmid><doi>10.1016/j.biomaterials.2023.122074</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6133-0829</orcidid><orcidid>https://orcid.org/0000-0002-1176-9267</orcidid><orcidid>https://orcid.org/0000-0002-8206-3325</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2023-05, Vol.296, p.122074-122074, Article 122074 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2785197425 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antimicrobial properties Bacteria Bacteria capturing Bacterial Infections biocompatibility biocompatible materials biosafety fever homeostasis Humans Hyperthermia, Induced irradiation molybdenum Molybdenum - chemistry Molybdenum - pharmacology multiple drug resistance MXene heterostructure nanotechnology Oxygen peptides photochemotherapy phototoxicity public health reactive oxygen species RNA sonocatalysis Sonodynamic therapy Synergistic antibacterial activity ultrasonics |
title | Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen-vacancy-rich%20molybdenum%20carbide%20MXene%20nanonetworks%20for%20ultrasound-triggered%20and%20capturing-enhanced%20sonocatalytic%20bacteria%20eradication&rft.jtitle=Biomaterials&rft.au=Zong,%20Lingqing&rft.date=2023-05&rft.volume=296&rft.spage=122074&rft.epage=122074&rft.pages=122074-122074&rft.artnum=122074&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2023.122074&rft_dat=%3Cproquest_cross%3E2785197425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785197425&rft_id=info:pmid/36889145&rft_els_id=S0142961223000820&rfr_iscdi=true |