Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication

Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2023-05, Vol.296, p.122074-122074, Article 122074
Hauptverfasser: Zong, Lingqing, Yu, Yang, Wang, Junhao, Liu, Peilai, Feng, Wei, Dai, Xinyue, Chen, Liang, Gunawan, Cindy, Jimmy Yun, Sung Lai, Amal, Rose, Cheong, Soshan, Gu, Zi, Chen, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122074
container_issue
container_start_page 122074
container_title Biomaterials
container_volume 296
creator Zong, Lingqing
Yu, Yang
Wang, Junhao
Liu, Peilai
Feng, Wei
Dai, Xinyue
Chen, Liang
Gunawan, Cindy
Jimmy Yun, Sung Lai
Amal, Rose
Cheong, Soshan
Gu, Zi
Chen, Yu
description Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection. [Display omitted]
doi_str_mv 10.1016/j.biomaterials.2023.122074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2785197425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961223000820</els_id><sourcerecordid>2785197425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhL6CIE5cstmPHDjfU8iUV9QISN8sfk62XxF5sp5D_wI_GyxbEDU6WR887o5kHoWcEbwkm_Yv91vg46wLJ6ylvKabdllCKBbuHNkQK2fIB8_togwmj7dATeoYe5bzH9Y8ZfYjOul7KgTC-QT-uv687CO2ttjrYtU3e3jRznFbjICxzY3Uy3kHz4TMEaIIOMUD5FtOX3IwxNctUks5xCa4tye92kMA1OriaO5Ql-bBrIdzUzrWcY4hWFz2txdvGaPtrgQaSdr7WfQyP0YOxbgRP7t5z9OnN648X79qr67fvL15dtZaRrrRESGbHQfd8HDU3lkk6sBEwkdxZoNY56Afa8R5Yb5gwIx4M753BowTRAXTn6Pmp7yHFrwvkomafLUyTDhCXrDrCOyE6OYh_olRITgbBKK_oyxNqU8w5wagOyc86rYpgdRSn9upvceooTp3E1fDTuzmLmcH9if42VYHLEwD1MLceksrWw_GwPoEtykX_P3N-AqwetU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785197425</pqid></control><display><type>article</type><title>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zong, Lingqing ; Yu, Yang ; Wang, Junhao ; Liu, Peilai ; Feng, Wei ; Dai, Xinyue ; Chen, Liang ; Gunawan, Cindy ; Jimmy Yun, Sung Lai ; Amal, Rose ; Cheong, Soshan ; Gu, Zi ; Chen, Yu</creator><creatorcontrib>Zong, Lingqing ; Yu, Yang ; Wang, Junhao ; Liu, Peilai ; Feng, Wei ; Dai, Xinyue ; Chen, Liang ; Gunawan, Cindy ; Jimmy Yun, Sung Lai ; Amal, Rose ; Cheong, Soshan ; Gu, Zi ; Chen, Yu</creatorcontrib><description>Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2023.122074</identifier><identifier>PMID: 36889145</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antimicrobial properties ; Bacteria ; Bacteria capturing ; Bacterial Infections ; biocompatibility ; biocompatible materials ; biosafety ; fever ; homeostasis ; Humans ; Hyperthermia, Induced ; irradiation ; molybdenum ; Molybdenum - chemistry ; Molybdenum - pharmacology ; multiple drug resistance ; MXene heterostructure ; nanotechnology ; Oxygen ; peptides ; photochemotherapy ; phototoxicity ; public health ; reactive oxygen species ; RNA ; sonocatalysis ; Sonodynamic therapy ; Synergistic antibacterial activity ; ultrasonics</subject><ispartof>Biomaterials, 2023-05, Vol.296, p.122074-122074, Article 122074</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</citedby><cites>FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</cites><orcidid>0000-0001-6133-0829 ; 0000-0002-1176-9267 ; 0000-0002-8206-3325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2023.122074$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36889145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Lingqing</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Wang, Junhao</creatorcontrib><creatorcontrib>Liu, Peilai</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Dai, Xinyue</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Gunawan, Cindy</creatorcontrib><creatorcontrib>Jimmy Yun, Sung Lai</creatorcontrib><creatorcontrib>Amal, Rose</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Gu, Zi</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection. [Display omitted]</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antimicrobial properties</subject><subject>Bacteria</subject><subject>Bacteria capturing</subject><subject>Bacterial Infections</subject><subject>biocompatibility</subject><subject>biocompatible materials</subject><subject>biosafety</subject><subject>fever</subject><subject>homeostasis</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>irradiation</subject><subject>molybdenum</subject><subject>Molybdenum - chemistry</subject><subject>Molybdenum - pharmacology</subject><subject>multiple drug resistance</subject><subject>MXene heterostructure</subject><subject>nanotechnology</subject><subject>Oxygen</subject><subject>peptides</subject><subject>photochemotherapy</subject><subject>phototoxicity</subject><subject>public health</subject><subject>reactive oxygen species</subject><subject>RNA</subject><subject>sonocatalysis</subject><subject>Sonodynamic therapy</subject><subject>Synergistic antibacterial activity</subject><subject>ultrasonics</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhL6CIE5cstmPHDjfU8iUV9QISN8sfk62XxF5sp5D_wI_GyxbEDU6WR887o5kHoWcEbwkm_Yv91vg46wLJ6ylvKabdllCKBbuHNkQK2fIB8_togwmj7dATeoYe5bzH9Y8ZfYjOul7KgTC-QT-uv687CO2ttjrYtU3e3jRznFbjICxzY3Uy3kHz4TMEaIIOMUD5FtOX3IwxNctUks5xCa4tye92kMA1OriaO5Ql-bBrIdzUzrWcY4hWFz2txdvGaPtrgQaSdr7WfQyP0YOxbgRP7t5z9OnN648X79qr67fvL15dtZaRrrRESGbHQfd8HDU3lkk6sBEwkdxZoNY56Afa8R5Yb5gwIx4M753BowTRAXTn6Pmp7yHFrwvkomafLUyTDhCXrDrCOyE6OYh_olRITgbBKK_oyxNqU8w5wagOyc86rYpgdRSn9upvceooTp3E1fDTuzmLmcH9if42VYHLEwD1MLceksrWw_GwPoEtykX_P3N-AqwetU8</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zong, Lingqing</creator><creator>Yu, Yang</creator><creator>Wang, Junhao</creator><creator>Liu, Peilai</creator><creator>Feng, Wei</creator><creator>Dai, Xinyue</creator><creator>Chen, Liang</creator><creator>Gunawan, Cindy</creator><creator>Jimmy Yun, Sung Lai</creator><creator>Amal, Rose</creator><creator>Cheong, Soshan</creator><creator>Gu, Zi</creator><creator>Chen, Yu</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6133-0829</orcidid><orcidid>https://orcid.org/0000-0002-1176-9267</orcidid><orcidid>https://orcid.org/0000-0002-8206-3325</orcidid></search><sort><creationdate>202305</creationdate><title>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</title><author>Zong, Lingqing ; Yu, Yang ; Wang, Junhao ; Liu, Peilai ; Feng, Wei ; Dai, Xinyue ; Chen, Liang ; Gunawan, Cindy ; Jimmy Yun, Sung Lai ; Amal, Rose ; Cheong, Soshan ; Gu, Zi ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1784cf9a65ffa5bc48294fe0185dce2cdde692356e46b47bf09b56db0f8e73ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antimicrobial properties</topic><topic>Bacteria</topic><topic>Bacteria capturing</topic><topic>Bacterial Infections</topic><topic>biocompatibility</topic><topic>biocompatible materials</topic><topic>biosafety</topic><topic>fever</topic><topic>homeostasis</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>irradiation</topic><topic>molybdenum</topic><topic>Molybdenum - chemistry</topic><topic>Molybdenum - pharmacology</topic><topic>multiple drug resistance</topic><topic>MXene heterostructure</topic><topic>nanotechnology</topic><topic>Oxygen</topic><topic>peptides</topic><topic>photochemotherapy</topic><topic>phototoxicity</topic><topic>public health</topic><topic>reactive oxygen species</topic><topic>RNA</topic><topic>sonocatalysis</topic><topic>Sonodynamic therapy</topic><topic>Synergistic antibacterial activity</topic><topic>ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Lingqing</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Wang, Junhao</creatorcontrib><creatorcontrib>Liu, Peilai</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Dai, Xinyue</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Gunawan, Cindy</creatorcontrib><creatorcontrib>Jimmy Yun, Sung Lai</creatorcontrib><creatorcontrib>Amal, Rose</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Gu, Zi</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zong, Lingqing</au><au>Yu, Yang</au><au>Wang, Junhao</au><au>Liu, Peilai</au><au>Feng, Wei</au><au>Dai, Xinyue</au><au>Chen, Liang</au><au>Gunawan, Cindy</au><au>Jimmy Yun, Sung Lai</au><au>Amal, Rose</au><au>Cheong, Soshan</au><au>Gu, Zi</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2023-05</date><risdate>2023</risdate><volume>296</volume><spage>122074</spage><epage>122074</epage><pages>122074-122074</pages><artnum>122074</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>36889145</pmid><doi>10.1016/j.biomaterials.2023.122074</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6133-0829</orcidid><orcidid>https://orcid.org/0000-0002-1176-9267</orcidid><orcidid>https://orcid.org/0000-0002-8206-3325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2023-05, Vol.296, p.122074-122074, Article 122074
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2785197425
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antimicrobial properties
Bacteria
Bacteria capturing
Bacterial Infections
biocompatibility
biocompatible materials
biosafety
fever
homeostasis
Humans
Hyperthermia, Induced
irradiation
molybdenum
Molybdenum - chemistry
Molybdenum - pharmacology
multiple drug resistance
MXene heterostructure
nanotechnology
Oxygen
peptides
photochemotherapy
phototoxicity
public health
reactive oxygen species
RNA
sonocatalysis
Sonodynamic therapy
Synergistic antibacterial activity
ultrasonics
title Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen-vacancy-rich%20molybdenum%20carbide%20MXene%20nanonetworks%20for%20ultrasound-triggered%20and%20capturing-enhanced%20sonocatalytic%20bacteria%20eradication&rft.jtitle=Biomaterials&rft.au=Zong,%20Lingqing&rft.date=2023-05&rft.volume=296&rft.spage=122074&rft.epage=122074&rft.pages=122074-122074&rft.artnum=122074&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2023.122074&rft_dat=%3Cproquest_cross%3E2785197425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785197425&rft_id=info:pmid/36889145&rft_els_id=S0142961223000820&rfr_iscdi=true