A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)
Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (ma...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2003-12, Vol.267 (3), p.325-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 3 |
container_start_page | 325 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 267 |
creator | Müllner, P. Chernenko, V.A. Kostorz, G. |
description | Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation. |
doi_str_mv | 10.1016/S0304-8853(03)00400-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27842674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885303004001</els_id><sourcerecordid>27842674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</originalsourceid><addsrcrecordid>eNqFkM1KAzEURmehYK0-gjAbpV2M3kzSdGYlpfgHBRfqOmSSGxuZTsYkFfr2ZmzRpRAI5J4vl-9k2QWBawKE37wABVZU1YxOgE4BGEBBjrLR7_NJdhrCBwAQVvFR1izyjVXeBeV6q3LZ995Jtc6jy-Ma84187zBaVRiLrS5sp7cKda7ROL-R0boudyZRPmIXbMR8sk-4vpUh5WzcTc-yYyPbgOeHe5y93d-9Lh-L1fPD03KxKhSjPBaVLjmgobxmTVNDrWvFidGEY6mNnBkwqHlVUabBpElpak7qBiVhcl7SOaPj7Gr_b6rwucUQxcYGhW0rO3TbIMp5xUr-A8724NA7eDSi9zZ12AkCYrAofiyKQZeAdAaLgqTc5WGBDEq2xstO2fAXnrGazmHgbvccprZfFr0IymKXxFmPKgrt7D-bvgHo1In5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27842674</pqid></control><display><type>article</type><title>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Müllner, P. ; Chernenko, V.A. ; Kostorz, G.</creator><creatorcontrib>Müllner, P. ; Chernenko, V.A. ; Kostorz, G.</creatorcontrib><description>Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/S0304-8853(03)00400-1</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ferromagnetic shape-memory alloy ; Heusler alloy ; Magnetic properties and materials ; Magneto-mechanical coupling ; Magnetomechanical and magnetoelectric effects, magnetostriction ; Martensitic transformations ; Materials science ; Metals. Metallurgy ; Ni–Mn–Ga ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Twinning</subject><ispartof>Journal of magnetism and magnetic materials, 2003-12, Vol.267 (3), p.325-334</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</citedby><cites>FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-8853(03)00400-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15493701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Müllner, P.</creatorcontrib><creatorcontrib>Chernenko, V.A.</creatorcontrib><creatorcontrib>Kostorz, G.</creatorcontrib><title>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</title><title>Journal of magnetism and magnetic materials</title><description>Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetic shape-memory alloy</subject><subject>Heusler alloy</subject><subject>Magnetic properties and materials</subject><subject>Magneto-mechanical coupling</subject><subject>Magnetomechanical and magnetoelectric effects, magnetostriction</subject><subject>Martensitic transformations</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Ni–Mn–Ga</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Twinning</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURmehYK0-gjAbpV2M3kzSdGYlpfgHBRfqOmSSGxuZTsYkFfr2ZmzRpRAI5J4vl-9k2QWBawKE37wABVZU1YxOgE4BGEBBjrLR7_NJdhrCBwAQVvFR1izyjVXeBeV6q3LZ995Jtc6jy-Ma84187zBaVRiLrS5sp7cKda7ROL-R0boudyZRPmIXbMR8sk-4vpUh5WzcTc-yYyPbgOeHe5y93d-9Lh-L1fPD03KxKhSjPBaVLjmgobxmTVNDrWvFidGEY6mNnBkwqHlVUabBpElpak7qBiVhcl7SOaPj7Gr_b6rwucUQxcYGhW0rO3TbIMp5xUr-A8724NA7eDSi9zZ12AkCYrAofiyKQZeAdAaLgqTc5WGBDEq2xstO2fAXnrGazmHgbvccprZfFr0IymKXxFmPKgrt7D-bvgHo1In5</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Müllner, P.</creator><creator>Chernenko, V.A.</creator><creator>Kostorz, G.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20031201</creationdate><title>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</title><author>Müllner, P. ; Chernenko, V.A. ; Kostorz, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetic shape-memory alloy</topic><topic>Heusler alloy</topic><topic>Magnetic properties and materials</topic><topic>Magneto-mechanical coupling</topic><topic>Magnetomechanical and magnetoelectric effects, magnetostriction</topic><topic>Martensitic transformations</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Ni–Mn–Ga</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müllner, P.</creatorcontrib><creatorcontrib>Chernenko, V.A.</creatorcontrib><creatorcontrib>Kostorz, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müllner, P.</au><au>Chernenko, V.A.</au><au>Kostorz, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>267</volume><issue>3</issue><spage>325</spage><epage>334</epage><pages>325-334</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-8853(03)00400-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2003-12, Vol.267 (3), p.325-334 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_27842674 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Ferromagnetic shape-memory alloy Heusler alloy Magnetic properties and materials Magneto-mechanical coupling Magnetomechanical and magnetoelectric effects, magnetostriction Martensitic transformations Materials science Metals. Metallurgy Ni–Mn–Ga Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Twinning |
title | A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microscopic%20approach%20to%20the%20magnetic-field-induced%20deformation%20of%20martensite%20(magnetoplasticity)&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=M%C3%BCllner,%20P.&rft.date=2003-12-01&rft.volume=267&rft.issue=3&rft.spage=325&rft.epage=334&rft.pages=325-334&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/S0304-8853(03)00400-1&rft_dat=%3Cproquest_cross%3E27842674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27842674&rft_id=info:pmid/&rft_els_id=S0304885303004001&rfr_iscdi=true |