A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)

Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2003-12, Vol.267 (3), p.325-334
Hauptverfasser: Müllner, P., Chernenko, V.A., Kostorz, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 325
container_title Journal of magnetism and magnetic materials
container_volume 267
creator Müllner, P.
Chernenko, V.A.
Kostorz, G.
description Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.
doi_str_mv 10.1016/S0304-8853(03)00400-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27842674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885303004001</els_id><sourcerecordid>27842674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</originalsourceid><addsrcrecordid>eNqFkM1KAzEURmehYK0-gjAbpV2M3kzSdGYlpfgHBRfqOmSSGxuZTsYkFfr2ZmzRpRAI5J4vl-9k2QWBawKE37wABVZU1YxOgE4BGEBBjrLR7_NJdhrCBwAQVvFR1izyjVXeBeV6q3LZ995Jtc6jy-Ma84187zBaVRiLrS5sp7cKda7ROL-R0boudyZRPmIXbMR8sk-4vpUh5WzcTc-yYyPbgOeHe5y93d-9Lh-L1fPD03KxKhSjPBaVLjmgobxmTVNDrWvFidGEY6mNnBkwqHlVUabBpElpak7qBiVhcl7SOaPj7Gr_b6rwucUQxcYGhW0rO3TbIMp5xUr-A8724NA7eDSi9zZ12AkCYrAofiyKQZeAdAaLgqTc5WGBDEq2xstO2fAXnrGazmHgbvccprZfFr0IymKXxFmPKgrt7D-bvgHo1In5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27842674</pqid></control><display><type>article</type><title>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Müllner, P. ; Chernenko, V.A. ; Kostorz, G.</creator><creatorcontrib>Müllner, P. ; Chernenko, V.A. ; Kostorz, G.</creatorcontrib><description>Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/S0304-8853(03)00400-1</identifier><identifier>CODEN: JMMMDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ferromagnetic shape-memory alloy ; Heusler alloy ; Magnetic properties and materials ; Magneto-mechanical coupling ; Magnetomechanical and magnetoelectric effects, magnetostriction ; Martensitic transformations ; Materials science ; Metals. Metallurgy ; Ni–Mn–Ga ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Twinning</subject><ispartof>Journal of magnetism and magnetic materials, 2003-12, Vol.267 (3), p.325-334</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</citedby><cites>FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-8853(03)00400-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15493701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Müllner, P.</creatorcontrib><creatorcontrib>Chernenko, V.A.</creatorcontrib><creatorcontrib>Kostorz, G.</creatorcontrib><title>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</title><title>Journal of magnetism and magnetic materials</title><description>Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetic shape-memory alloy</subject><subject>Heusler alloy</subject><subject>Magnetic properties and materials</subject><subject>Magneto-mechanical coupling</subject><subject>Magnetomechanical and magnetoelectric effects, magnetostriction</subject><subject>Martensitic transformations</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Ni–Mn–Ga</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Twinning</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURmehYK0-gjAbpV2M3kzSdGYlpfgHBRfqOmSSGxuZTsYkFfr2ZmzRpRAI5J4vl-9k2QWBawKE37wABVZU1YxOgE4BGEBBjrLR7_NJdhrCBwAQVvFR1izyjVXeBeV6q3LZ995Jtc6jy-Ma84187zBaVRiLrS5sp7cKda7ROL-R0boudyZRPmIXbMR8sk-4vpUh5WzcTc-yYyPbgOeHe5y93d-9Lh-L1fPD03KxKhSjPBaVLjmgobxmTVNDrWvFidGEY6mNnBkwqHlVUabBpElpak7qBiVhcl7SOaPj7Gr_b6rwucUQxcYGhW0rO3TbIMp5xUr-A8724NA7eDSi9zZ12AkCYrAofiyKQZeAdAaLgqTc5WGBDEq2xstO2fAXnrGazmHgbvccprZfFr0IymKXxFmPKgrt7D-bvgHo1In5</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Müllner, P.</creator><creator>Chernenko, V.A.</creator><creator>Kostorz, G.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20031201</creationdate><title>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</title><author>Müllner, P. ; Chernenko, V.A. ; Kostorz, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8d260ef3694bb909d9c61fd16e2dfa5f0fed68834d0fc612f9619bea14a723743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetic shape-memory alloy</topic><topic>Heusler alloy</topic><topic>Magnetic properties and materials</topic><topic>Magneto-mechanical coupling</topic><topic>Magnetomechanical and magnetoelectric effects, magnetostriction</topic><topic>Martensitic transformations</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Ni–Mn–Ga</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müllner, P.</creatorcontrib><creatorcontrib>Chernenko, V.A.</creatorcontrib><creatorcontrib>Kostorz, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müllner, P.</au><au>Chernenko, V.A.</au><au>Kostorz, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>267</volume><issue>3</issue><spage>325</spage><epage>334</epage><pages>325-334</pages><issn>0304-8853</issn><coden>JMMMDC</coden><abstract>Deformation experiments were performed in uniaxial compression with a Ni–Mn–Ga single crystal subjected to a magnetic field perpendicular to the stress axis. Depending on the field strength, different stress–strain curves for loading and unloading were obtained. The magnetic-field-induced stress (magneto-stress) and the work done by the corresponding magnetic force were evaluated. In order to understand the relationship between the magneto-mechanical properties and the microstructure, the microscopic processes occurring during magnetic-field-induced deformation are discussed in detail. It turns out that the magnetic work per unit volume and, to some extent, the macroscopic magneto-stress depend on the microstructure, i.e. the spatial distribution of martensite domains. The magnetic threshold field required for triggering magnetoplasticity depends on the twin thickness and is controlled by the mutual interaction of twinning dislocations and their interaction with interfaces. The threshold field can be entirely described within this microscopic approach, taking into account the elementary carrier of magnetoplasticity, which is the twinning dislocation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-8853(03)00400-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2003-12, Vol.267 (3), p.325-334
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_27842674
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Ferromagnetic shape-memory alloy
Heusler alloy
Magnetic properties and materials
Magneto-mechanical coupling
Magnetomechanical and magnetoelectric effects, magnetostriction
Martensitic transformations
Materials science
Metals. Metallurgy
Ni–Mn–Ga
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Twinning
title A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microscopic%20approach%20to%20the%20magnetic-field-induced%20deformation%20of%20martensite%20(magnetoplasticity)&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=M%C3%BCllner,%20P.&rft.date=2003-12-01&rft.volume=267&rft.issue=3&rft.spage=325&rft.epage=334&rft.pages=325-334&rft.issn=0304-8853&rft.coden=JMMMDC&rft_id=info:doi/10.1016/S0304-8853(03)00400-1&rft_dat=%3Cproquest_cross%3E27842674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27842674&rft_id=info:pmid/&rft_els_id=S0304885303004001&rfr_iscdi=true