Elasticity solution for free vibration of laminated beams

Based on the two-dimensional theory of elasticity, a new approach combining the state space method and the differential quadrature method is presented in this paper for freely vibrating laminated beams. Applying the differential quadrature method to the state space formulations along the axial direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2003-10, Vol.62 (1), p.75-82
Hauptverfasser: Chen, W.Q., Lv, C.F., Bian, Z.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 75
container_title Composite structures
container_volume 62
creator Chen, W.Q.
Lv, C.F.
Bian, Z.G.
description Based on the two-dimensional theory of elasticity, a new approach combining the state space method and the differential quadrature method is presented in this paper for freely vibrating laminated beams. Applying the differential quadrature method to the state space formulations along the axial direction of the beam, new state equations about state variables at discrete points are obtained. Using matrix theory, the solution can be easily derived, which can very conveniently deal with the continuity conditions. Frequency equation governing the free vibration of laminated beams is then derived and the natural frequencies are obtained. No other assumption on deformations and stresses along the thickness direction is introduced, so that the present method is efficient for laminated beams with arbitrary thickness. It also can cope with arbitrary boundary conditions without applying Saint-Venant’s principle. Numerical examples of multi-layered beams and sandwich beams are performed. Results are verified by comparing them with the published results obtained from various finite element methods and shear beam theories.
doi_str_mv 10.1016/S0263-8223(03)00086-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27841674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822303000862</els_id><sourcerecordid>27841674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-32e06edd99a11b4486ecb53661eae349c26a04294ca7311b6ade9712d0b713a13</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFb_BCEXRQ_R2Y9skpNIqR9Q8KCel8lmAitptu6mhf73Jm3RozAwMPzePN5j7JLDHQeu799BaJkWQsgbkLcAUOhUHLEJL_Iy5VBkx2zyi5yysxi_RkhxPmHlvMXYO-v6bRJ9u-6d75LGh6QJRMnGVQF3J98kLS5dhz3VSUW4jOfspME20sVhT9nn0_xj9pIu3p5fZ4-L1CoBfSoFgaa6LkvkvFKq0GSrTGrNCUmq0gqNoESpLOZyIDTWVOZc1FDlXCKXU3a9_7sK_ntNsTdLFy21LXbk19GIfEiiczWA2R60wccYqDGr4JYYtoaDGYsyu6LM2IKBYcaijBh0VwcDjBbbJmBnXfwTZyDyTGcD97DnaEi7cRRMtI46S7ULZHtTe_eP0w-GU3vF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27841674</pqid></control><display><type>article</type><title>Elasticity solution for free vibration of laminated beams</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Chen, W.Q. ; Lv, C.F. ; Bian, Z.G.</creator><creatorcontrib>Chen, W.Q. ; Lv, C.F. ; Bian, Z.G.</creatorcontrib><description>Based on the two-dimensional theory of elasticity, a new approach combining the state space method and the differential quadrature method is presented in this paper for freely vibrating laminated beams. Applying the differential quadrature method to the state space formulations along the axial direction of the beam, new state equations about state variables at discrete points are obtained. Using matrix theory, the solution can be easily derived, which can very conveniently deal with the continuity conditions. Frequency equation governing the free vibration of laminated beams is then derived and the natural frequencies are obtained. No other assumption on deformations and stresses along the thickness direction is introduced, so that the present method is efficient for laminated beams with arbitrary thickness. It also can cope with arbitrary boundary conditions without applying Saint-Venant’s principle. Numerical examples of multi-layered beams and sandwich beams are performed. Results are verified by comparing them with the published results obtained from various finite element methods and shear beam theories.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/S0263-8223(03)00086-2</identifier><identifier>CODEN: COMSE2</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational techniques ; Elasticity solution ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Laminated beams ; Mathematical methods in physics ; Natural frequencies ; New approach ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Composite structures, 2003-10, Vol.62 (1), p.75-82</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-32e06edd99a11b4486ecb53661eae349c26a04294ca7311b6ade9712d0b713a13</citedby><cites>FETCH-LOGICAL-c420t-32e06edd99a11b4486ecb53661eae349c26a04294ca7311b6ade9712d0b713a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0263-8223(03)00086-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15027565$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, W.Q.</creatorcontrib><creatorcontrib>Lv, C.F.</creatorcontrib><creatorcontrib>Bian, Z.G.</creatorcontrib><title>Elasticity solution for free vibration of laminated beams</title><title>Composite structures</title><description>Based on the two-dimensional theory of elasticity, a new approach combining the state space method and the differential quadrature method is presented in this paper for freely vibrating laminated beams. Applying the differential quadrature method to the state space formulations along the axial direction of the beam, new state equations about state variables at discrete points are obtained. Using matrix theory, the solution can be easily derived, which can very conveniently deal with the continuity conditions. Frequency equation governing the free vibration of laminated beams is then derived and the natural frequencies are obtained. No other assumption on deformations and stresses along the thickness direction is introduced, so that the present method is efficient for laminated beams with arbitrary thickness. It also can cope with arbitrary boundary conditions without applying Saint-Venant’s principle. Numerical examples of multi-layered beams and sandwich beams are performed. Results are verified by comparing them with the published results obtained from various finite element methods and shear beam theories.</description><subject>Computational techniques</subject><subject>Elasticity solution</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminated beams</subject><subject>Mathematical methods in physics</subject><subject>Natural frequencies</subject><subject>New approach</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFb_BCEXRQ_R2Y9skpNIqR9Q8KCel8lmAitptu6mhf73Jm3RozAwMPzePN5j7JLDHQeu799BaJkWQsgbkLcAUOhUHLEJL_Iy5VBkx2zyi5yysxi_RkhxPmHlvMXYO-v6bRJ9u-6d75LGh6QJRMnGVQF3J98kLS5dhz3VSUW4jOfspME20sVhT9nn0_xj9pIu3p5fZ4-L1CoBfSoFgaa6LkvkvFKq0GSrTGrNCUmq0gqNoESpLOZyIDTWVOZc1FDlXCKXU3a9_7sK_ntNsTdLFy21LXbk19GIfEiiczWA2R60wccYqDGr4JYYtoaDGYsyu6LM2IKBYcaijBh0VwcDjBbbJmBnXfwTZyDyTGcD97DnaEi7cRRMtI46S7ULZHtTe_eP0w-GU3vF</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Chen, W.Q.</creator><creator>Lv, C.F.</creator><creator>Bian, Z.G.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20031001</creationdate><title>Elasticity solution for free vibration of laminated beams</title><author>Chen, W.Q. ; Lv, C.F. ; Bian, Z.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-32e06edd99a11b4486ecb53661eae349c26a04294ca7311b6ade9712d0b713a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational techniques</topic><topic>Elasticity solution</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminated beams</topic><topic>Mathematical methods in physics</topic><topic>Natural frequencies</topic><topic>New approach</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, W.Q.</creatorcontrib><creatorcontrib>Lv, C.F.</creatorcontrib><creatorcontrib>Bian, Z.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, W.Q.</au><au>Lv, C.F.</au><au>Bian, Z.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elasticity solution for free vibration of laminated beams</atitle><jtitle>Composite structures</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>62</volume><issue>1</issue><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><coden>COMSE2</coden><abstract>Based on the two-dimensional theory of elasticity, a new approach combining the state space method and the differential quadrature method is presented in this paper for freely vibrating laminated beams. Applying the differential quadrature method to the state space formulations along the axial direction of the beam, new state equations about state variables at discrete points are obtained. Using matrix theory, the solution can be easily derived, which can very conveniently deal with the continuity conditions. Frequency equation governing the free vibration of laminated beams is then derived and the natural frequencies are obtained. No other assumption on deformations and stresses along the thickness direction is introduced, so that the present method is efficient for laminated beams with arbitrary thickness. It also can cope with arbitrary boundary conditions without applying Saint-Venant’s principle. Numerical examples of multi-layered beams and sandwich beams are performed. Results are verified by comparing them with the published results obtained from various finite element methods and shear beam theories.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0263-8223(03)00086-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2003-10, Vol.62 (1), p.75-82
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_27841674
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Computational techniques
Elasticity solution
Exact sciences and technology
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Laminated beams
Mathematical methods in physics
Natural frequencies
New approach
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Elasticity solution for free vibration of laminated beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elasticity%20solution%20for%20free%20vibration%20of%20laminated%20beams&rft.jtitle=Composite%20structures&rft.au=Chen,%20W.Q.&rft.date=2003-10-01&rft.volume=62&rft.issue=1&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=0263-8223&rft.eissn=1879-1085&rft.coden=COMSE2&rft_id=info:doi/10.1016/S0263-8223(03)00086-2&rft_dat=%3Cproquest_cross%3E27841674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27841674&rft_id=info:pmid/&rft_els_id=S0263822303000862&rfr_iscdi=true