Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model
Reduction, followed by hydrofluorination of uranium trioxide UO 3 to produce uranium tetrafluoride UF 4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2003-06, Vol.58 (12), p.2617-2627 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2627 |
---|---|
container_issue | 12 |
container_start_page | 2617 |
container_title | Chemical engineering science |
container_volume | 58 |
creator | Dussoubs, B. Jourde, J. Patisson, F. Houzelot, J.-L. Ablitzer, D. |
description | Reduction, followed by hydrofluorination of uranium trioxide UO
3 to produce uranium tetrafluoride UF
4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2. |
doi_str_mv | 10.1016/S0009-2509(03)00117-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27839844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250903001179</els_id><sourcerecordid>27839844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</originalsourceid><addsrcrecordid>eNqFkMtKxDAYRoMoOI4-gpCNootq0qRN6kZk8AYjCuo6pLlopG3GpB3w7U1nRl26yoXz_ZcDwCFGZxjh8vwZIVRleYGqE0ROEcKYZdUWmGDOSEYpKrbB5BfZBXsxfqQnYxhNQPfgtWka171Bb6GErV-O99poaIfQSWWg9QH27wYugteD6p3vRnQIsnNDC3vTB2mbwQenDXySoYf4Ysy0QyN_4DHejo32wY6VTTQHm3MKXm-uX2Z32fzx9n52Nc8UKXmfaUYZrQusc0xKmVNErVWWFDUv0r9EteYyryspyxpjw2ua61zhuuRFyQpeEjIFx-u6aejPwcRetC6qtKjsjB-iyBknFac0gcUaVMHHGIwVi-BaGb4ERmK0K1Z2xahOICJWdkWVckebBjIq2dhkQ7n4F6bJfc7G-pdrzqRtl84EEZUznTLaBaN6ob37p9M3WkSO5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27839844</pqid></control><display><type>article</type><title>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dussoubs, B. ; Jourde, J. ; Patisson, F. ; Houzelot, J.-L. ; Ablitzer, D.</creator><creatorcontrib>Dussoubs, B. ; Jourde, J. ; Patisson, F. ; Houzelot, J.-L. ; Ablitzer, D.</creatorcontrib><description>Reduction, followed by hydrofluorination of uranium trioxide UO
3 to produce uranium tetrafluoride UF
4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(03)00117-9</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Fuels ; Gas–solid reactions ; Heat and mass transfer ; Kinetics ; Mathematical modelling ; Moving bed ; Nuclear fuels ; Numerical simulation ; Preparation and processing of nuclear fuels ; Production of uranium tetrafluoride</subject><ispartof>Chemical engineering science, 2003-06, Vol.58 (12), p.2617-2627</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</citedby><cites>FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(03)00117-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14873274$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dussoubs, B.</creatorcontrib><creatorcontrib>Jourde, J.</creatorcontrib><creatorcontrib>Patisson, F.</creatorcontrib><creatorcontrib>Houzelot, J.-L.</creatorcontrib><creatorcontrib>Ablitzer, D.</creatorcontrib><title>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</title><title>Chemical engineering science</title><description>Reduction, followed by hydrofluorination of uranium trioxide UO
3 to produce uranium tetrafluoride UF
4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas–solid reactions</subject><subject>Heat and mass transfer</subject><subject>Kinetics</subject><subject>Mathematical modelling</subject><subject>Moving bed</subject><subject>Nuclear fuels</subject><subject>Numerical simulation</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Production of uranium tetrafluoride</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAYRoMoOI4-gpCNootq0qRN6kZk8AYjCuo6pLlopG3GpB3w7U1nRl26yoXz_ZcDwCFGZxjh8vwZIVRleYGqE0ROEcKYZdUWmGDOSEYpKrbB5BfZBXsxfqQnYxhNQPfgtWka171Bb6GErV-O99poaIfQSWWg9QH27wYugteD6p3vRnQIsnNDC3vTB2mbwQenDXySoYf4Ysy0QyN_4DHejo32wY6VTTQHm3MKXm-uX2Z32fzx9n52Nc8UKXmfaUYZrQusc0xKmVNErVWWFDUv0r9EteYyryspyxpjw2ua61zhuuRFyQpeEjIFx-u6aejPwcRetC6qtKjsjB-iyBknFac0gcUaVMHHGIwVi-BaGb4ERmK0K1Z2xahOICJWdkWVckebBjIq2dhkQ7n4F6bJfc7G-pdrzqRtl84EEZUznTLaBaN6ob37p9M3WkSO5A</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Dussoubs, B.</creator><creator>Jourde, J.</creator><creator>Patisson, F.</creator><creator>Houzelot, J.-L.</creator><creator>Ablitzer, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030601</creationdate><title>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</title><author>Dussoubs, B. ; Jourde, J. ; Patisson, F. ; Houzelot, J.-L. ; Ablitzer, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas–solid reactions</topic><topic>Heat and mass transfer</topic><topic>Kinetics</topic><topic>Mathematical modelling</topic><topic>Moving bed</topic><topic>Nuclear fuels</topic><topic>Numerical simulation</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Production of uranium tetrafluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dussoubs, B.</creatorcontrib><creatorcontrib>Jourde, J.</creatorcontrib><creatorcontrib>Patisson, F.</creatorcontrib><creatorcontrib>Houzelot, J.-L.</creatorcontrib><creatorcontrib>Ablitzer, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dussoubs, B.</au><au>Jourde, J.</au><au>Patisson, F.</au><au>Houzelot, J.-L.</au><au>Ablitzer, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</atitle><jtitle>Chemical engineering science</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>58</volume><issue>12</issue><spage>2617</spage><epage>2627</epage><pages>2617-2627</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Reduction, followed by hydrofluorination of uranium trioxide UO
3 to produce uranium tetrafluoride UF
4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(03)00117-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2003-06, Vol.58 (12), p.2617-2627 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_27839844 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Energy Exact sciences and technology Fuels Gas–solid reactions Heat and mass transfer Kinetics Mathematical modelling Moving bed Nuclear fuels Numerical simulation Preparation and processing of nuclear fuels Production of uranium tetrafluoride |
title | Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20a%20moving%20bed%20furnace%20for%20the%20production%20of%20uranium%20tetrafluoride%20Part%201:%20formulation%20of%20the%20model&rft.jtitle=Chemical%20engineering%20science&rft.au=Dussoubs,%20B.&rft.date=2003-06-01&rft.volume=58&rft.issue=12&rft.spage=2617&rft.epage=2627&rft.pages=2617-2627&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(03)00117-9&rft_dat=%3Cproquest_cross%3E27839844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27839844&rft_id=info:pmid/&rft_els_id=S0009250903001179&rfr_iscdi=true |