Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model

Reduction, followed by hydrofluorination of uranium trioxide UO 3 to produce uranium tetrafluoride UF 4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2003-06, Vol.58 (12), p.2617-2627
Hauptverfasser: Dussoubs, B., Jourde, J., Patisson, F., Houzelot, J.-L., Ablitzer, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2627
container_issue 12
container_start_page 2617
container_title Chemical engineering science
container_volume 58
creator Dussoubs, B.
Jourde, J.
Patisson, F.
Houzelot, J.-L.
Ablitzer, D.
description Reduction, followed by hydrofluorination of uranium trioxide UO 3 to produce uranium tetrafluoride UF 4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.
doi_str_mv 10.1016/S0009-2509(03)00117-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27839844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250903001179</els_id><sourcerecordid>27839844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</originalsourceid><addsrcrecordid>eNqFkMtKxDAYRoMoOI4-gpCNootq0qRN6kZk8AYjCuo6pLlopG3GpB3w7U1nRl26yoXz_ZcDwCFGZxjh8vwZIVRleYGqE0ROEcKYZdUWmGDOSEYpKrbB5BfZBXsxfqQnYxhNQPfgtWka171Bb6GErV-O99poaIfQSWWg9QH27wYugteD6p3vRnQIsnNDC3vTB2mbwQenDXySoYf4Ysy0QyN_4DHejo32wY6VTTQHm3MKXm-uX2Z32fzx9n52Nc8UKXmfaUYZrQusc0xKmVNErVWWFDUv0r9EteYyryspyxpjw2ua61zhuuRFyQpeEjIFx-u6aejPwcRetC6qtKjsjB-iyBknFac0gcUaVMHHGIwVi-BaGb4ERmK0K1Z2xahOICJWdkWVckebBjIq2dhkQ7n4F6bJfc7G-pdrzqRtl84EEZUznTLaBaN6ob37p9M3WkSO5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27839844</pqid></control><display><type>article</type><title>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dussoubs, B. ; Jourde, J. ; Patisson, F. ; Houzelot, J.-L. ; Ablitzer, D.</creator><creatorcontrib>Dussoubs, B. ; Jourde, J. ; Patisson, F. ; Houzelot, J.-L. ; Ablitzer, D.</creatorcontrib><description>Reduction, followed by hydrofluorination of uranium trioxide UO 3 to produce uranium tetrafluoride UF 4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(03)00117-9</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Fuels ; Gas–solid reactions ; Heat and mass transfer ; Kinetics ; Mathematical modelling ; Moving bed ; Nuclear fuels ; Numerical simulation ; Preparation and processing of nuclear fuels ; Production of uranium tetrafluoride</subject><ispartof>Chemical engineering science, 2003-06, Vol.58 (12), p.2617-2627</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</citedby><cites>FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(03)00117-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14873274$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dussoubs, B.</creatorcontrib><creatorcontrib>Jourde, J.</creatorcontrib><creatorcontrib>Patisson, F.</creatorcontrib><creatorcontrib>Houzelot, J.-L.</creatorcontrib><creatorcontrib>Ablitzer, D.</creatorcontrib><title>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</title><title>Chemical engineering science</title><description>Reduction, followed by hydrofluorination of uranium trioxide UO 3 to produce uranium tetrafluoride UF 4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas–solid reactions</subject><subject>Heat and mass transfer</subject><subject>Kinetics</subject><subject>Mathematical modelling</subject><subject>Moving bed</subject><subject>Nuclear fuels</subject><subject>Numerical simulation</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Production of uranium tetrafluoride</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAYRoMoOI4-gpCNootq0qRN6kZk8AYjCuo6pLlopG3GpB3w7U1nRl26yoXz_ZcDwCFGZxjh8vwZIVRleYGqE0ROEcKYZdUWmGDOSEYpKrbB5BfZBXsxfqQnYxhNQPfgtWka171Bb6GErV-O99poaIfQSWWg9QH27wYugteD6p3vRnQIsnNDC3vTB2mbwQenDXySoYf4Ysy0QyN_4DHejo32wY6VTTQHm3MKXm-uX2Z32fzx9n52Nc8UKXmfaUYZrQusc0xKmVNErVWWFDUv0r9EteYyryspyxpjw2ua61zhuuRFyQpeEjIFx-u6aejPwcRetC6qtKjsjB-iyBknFac0gcUaVMHHGIwVi-BaGb4ERmK0K1Z2xahOICJWdkWVckebBjIq2dhkQ7n4F6bJfc7G-pdrzqRtl84EEZUznTLaBaN6ob37p9M3WkSO5A</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Dussoubs, B.</creator><creator>Jourde, J.</creator><creator>Patisson, F.</creator><creator>Houzelot, J.-L.</creator><creator>Ablitzer, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030601</creationdate><title>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</title><author>Dussoubs, B. ; Jourde, J. ; Patisson, F. ; Houzelot, J.-L. ; Ablitzer, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d7474b51d2136a2404ffcf35b8574ba0bd8a2b9aa6b11e8b42d2c1b6856758633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas–solid reactions</topic><topic>Heat and mass transfer</topic><topic>Kinetics</topic><topic>Mathematical modelling</topic><topic>Moving bed</topic><topic>Nuclear fuels</topic><topic>Numerical simulation</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Production of uranium tetrafluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dussoubs, B.</creatorcontrib><creatorcontrib>Jourde, J.</creatorcontrib><creatorcontrib>Patisson, F.</creatorcontrib><creatorcontrib>Houzelot, J.-L.</creatorcontrib><creatorcontrib>Ablitzer, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dussoubs, B.</au><au>Jourde, J.</au><au>Patisson, F.</au><au>Houzelot, J.-L.</au><au>Ablitzer, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model</atitle><jtitle>Chemical engineering science</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>58</volume><issue>12</issue><spage>2617</spage><epage>2627</epage><pages>2617-2627</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Reduction, followed by hydrofluorination of uranium trioxide UO 3 to produce uranium tetrafluoride UF 4 is one of the stages of the French nuclear fuel making route. This dual operation is carried out in a specific reactor known as a moving bed furnace, consisting of a series of steel cylinders that form an L. In this first part of a two-part paper, the mathematical modelling of the furnace is presented in detail. The model describes solid and gas flow, heat transfer by convection, conduction and radiation in the moving bed and in the walls of the furnace, and chemical reactions. In the vertical part of the reactor, mass, momentum and energy balances are solved using the finite volume method. The horizontal part is modelled by a cascade of stirred gas and solid reactors. The assumptions and equations of the model, as well as the boundary conditions and numerical solution techniques are detailed. An example of calculated results is presented and found to agree satisfactorily with available measurements. Application of the model is discussed in Part 2.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(03)00117-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2003-06, Vol.58 (12), p.2617-2627
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_27839844
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Energy
Exact sciences and technology
Fuels
Gas–solid reactions
Heat and mass transfer
Kinetics
Mathematical modelling
Moving bed
Nuclear fuels
Numerical simulation
Preparation and processing of nuclear fuels
Production of uranium tetrafluoride
title Modelling of a moving bed furnace for the production of uranium tetrafluoride Part 1: formulation of the model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20a%20moving%20bed%20furnace%20for%20the%20production%20of%20uranium%20tetrafluoride%20Part%201:%20formulation%20of%20the%20model&rft.jtitle=Chemical%20engineering%20science&rft.au=Dussoubs,%20B.&rft.date=2003-06-01&rft.volume=58&rft.issue=12&rft.spage=2617&rft.epage=2627&rft.pages=2617-2627&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(03)00117-9&rft_dat=%3Cproquest_cross%3E27839844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27839844&rft_id=info:pmid/&rft_els_id=S0009250903001179&rfr_iscdi=true