Mechanical Control of Relaxation using Intact Cardiac Trabeculae
Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the rem...
Gespeichert in:
Veröffentlicht in: | Journal of visualized experiments 2023-02 (192) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 192 |
container_start_page | |
container_title | Journal of visualized experiments |
container_volume | |
creator | Bukowski, Melissa J Cavanaugh, Benjamin Abbo, Anita Chung, Charles S |
description | Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure. |
doi_str_mv | 10.3791/64879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_2783792776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783792776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-de557997dba4a55e2c248bcda77efcbe62ac6a0f3ffbb7f37dfbcad6a60df0d63</originalsourceid><addsrcrecordid>eNpNkMtKw0AYRgdRbK19BZmN4CY6ySRz2SmhaqEiSAV34Z-bRqaZOpOAvr2treLq-xaHszgITXNySbnMr1gpuDxA41yWJCOCvxz--yN0ktI7IawglThGI8oEZ5LKMbp-sPoNulaDx3Xo-hg8Dg4_WQ-f0Lehw0Nqu1c873rQPa4hmhY0XkZQVg8e7Ck6cuCTne53gp5vZ8v6Pls83s3rm0WmKRF9ZmxVcSm5UVBCVdlCF6VQ2gDn1mllWQGaAXHUOaW4o9w4pcEwYMQ4YhidoIuddx3Dx2BT36zapK330NkwpKbgYtOh4HyLnu9QHUNK0bpmHdsVxK8mJ802VvMTa8Od7ZWDWlnzR_3Wod9atmUD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783792776</pqid></control><display><type>article</type><title>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</title><source>Journal of Visualized Experiments : JoVE</source><creator>Bukowski, Melissa J ; Cavanaugh, Benjamin ; Abbo, Anita ; Chung, Charles S</creator><creatorcontrib>Bukowski, Melissa J ; Cavanaugh, Benjamin ; Abbo, Anita ; Chung, Charles S</creatorcontrib><description>Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/64879</identifier><identifier>PMID: 36876939</identifier><language>eng</language><publisher>United States</publisher><subject>Actin Cytoskeleton ; Animals ; Blood Pressure ; Heart ; Heart Failure ; Myocardium</subject><ispartof>Journal of visualized experiments, 2023-02 (192)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-de557997dba4a55e2c248bcda77efcbe62ac6a0f3ffbb7f37dfbcad6a60df0d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3830,27901,27902</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/64879$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36876939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bukowski, Melissa J</creatorcontrib><creatorcontrib>Cavanaugh, Benjamin</creatorcontrib><creatorcontrib>Abbo, Anita</creatorcontrib><creatorcontrib>Chung, Charles S</creatorcontrib><title>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</title><title>Journal of visualized experiments</title><addtitle>J Vis Exp</addtitle><description>Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.</description><subject>Actin Cytoskeleton</subject><subject>Animals</subject><subject>Blood Pressure</subject><subject>Heart</subject><subject>Heart Failure</subject><subject>Myocardium</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtKw0AYRgdRbK19BZmN4CY6ySRz2SmhaqEiSAV34Z-bRqaZOpOAvr2treLq-xaHszgITXNySbnMr1gpuDxA41yWJCOCvxz--yN0ktI7IawglThGI8oEZ5LKMbp-sPoNulaDx3Xo-hg8Dg4_WQ-f0Lehw0Nqu1c873rQPa4hmhY0XkZQVg8e7Ck6cuCTne53gp5vZ8v6Pls83s3rm0WmKRF9ZmxVcSm5UVBCVdlCF6VQ2gDn1mllWQGaAXHUOaW4o9w4pcEwYMQ4YhidoIuddx3Dx2BT36zapK330NkwpKbgYtOh4HyLnu9QHUNK0bpmHdsVxK8mJ802VvMTa8Od7ZWDWlnzR_3Wod9atmUD</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>Bukowski, Melissa J</creator><creator>Cavanaugh, Benjamin</creator><creator>Abbo, Anita</creator><creator>Chung, Charles S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230217</creationdate><title>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</title><author>Bukowski, Melissa J ; Cavanaugh, Benjamin ; Abbo, Anita ; Chung, Charles S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-de557997dba4a55e2c248bcda77efcbe62ac6a0f3ffbb7f37dfbcad6a60df0d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin Cytoskeleton</topic><topic>Animals</topic><topic>Blood Pressure</topic><topic>Heart</topic><topic>Heart Failure</topic><topic>Myocardium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukowski, Melissa J</creatorcontrib><creatorcontrib>Cavanaugh, Benjamin</creatorcontrib><creatorcontrib>Abbo, Anita</creatorcontrib><creatorcontrib>Chung, Charles S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of visualized experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bukowski, Melissa J</au><au>Cavanaugh, Benjamin</au><au>Abbo, Anita</au><au>Chung, Charles S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</atitle><jtitle>Journal of visualized experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2023-02-17</date><risdate>2023</risdate><issue>192</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.</abstract><cop>United States</cop><pmid>36876939</pmid><doi>10.3791/64879</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1940-087X |
ispartof | Journal of visualized experiments, 2023-02 (192) |
issn | 1940-087X 1940-087X |
language | eng |
recordid | cdi_proquest_miscellaneous_2783792776 |
source | Journal of Visualized Experiments : JoVE |
subjects | Actin Cytoskeleton Animals Blood Pressure Heart Heart Failure Myocardium |
title | Mechanical Control of Relaxation using Intact Cardiac Trabeculae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Control%20of%20Relaxation%20using%20Intact%20Cardiac%20Trabeculae&rft.jtitle=Journal%20of%20visualized%20experiments&rft.au=Bukowski,%20Melissa%20J&rft.date=2023-02-17&rft.issue=192&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/64879&rft_dat=%3Cproquest_223%3E2783792776%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783792776&rft_id=info:pmid/36876939&rfr_iscdi=true |