Mechanical Control of Relaxation using Intact Cardiac Trabeculae

Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualized experiments 2023-02 (192)
Hauptverfasser: Bukowski, Melissa J, Cavanaugh, Benjamin, Abbo, Anita, Chung, Charles S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 192
container_start_page
container_title Journal of visualized experiments
container_volume
creator Bukowski, Melissa J
Cavanaugh, Benjamin
Abbo, Anita
Chung, Charles S
description Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.
doi_str_mv 10.3791/64879
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_2783792776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783792776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-de557997dba4a55e2c248bcda77efcbe62ac6a0f3ffbb7f37dfbcad6a60df0d63</originalsourceid><addsrcrecordid>eNpNkMtKw0AYRgdRbK19BZmN4CY6ySRz2SmhaqEiSAV34Z-bRqaZOpOAvr2treLq-xaHszgITXNySbnMr1gpuDxA41yWJCOCvxz--yN0ktI7IawglThGI8oEZ5LKMbp-sPoNulaDx3Xo-hg8Dg4_WQ-f0Lehw0Nqu1c873rQPa4hmhY0XkZQVg8e7Ck6cuCTne53gp5vZ8v6Pls83s3rm0WmKRF9ZmxVcSm5UVBCVdlCF6VQ2gDn1mllWQGaAXHUOaW4o9w4pcEwYMQ4YhidoIuddx3Dx2BT36zapK330NkwpKbgYtOh4HyLnu9QHUNK0bpmHdsVxK8mJ802VvMTa8Od7ZWDWlnzR_3Wod9atmUD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783792776</pqid></control><display><type>article</type><title>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</title><source>Journal of Visualized Experiments : JoVE</source><creator>Bukowski, Melissa J ; Cavanaugh, Benjamin ; Abbo, Anita ; Chung, Charles S</creator><creatorcontrib>Bukowski, Melissa J ; Cavanaugh, Benjamin ; Abbo, Anita ; Chung, Charles S</creatorcontrib><description>Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/64879</identifier><identifier>PMID: 36876939</identifier><language>eng</language><publisher>United States</publisher><subject>Actin Cytoskeleton ; Animals ; Blood Pressure ; Heart ; Heart Failure ; Myocardium</subject><ispartof>Journal of visualized experiments, 2023-02 (192)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-de557997dba4a55e2c248bcda77efcbe62ac6a0f3ffbb7f37dfbcad6a60df0d63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3830,27901,27902</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/64879$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36876939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bukowski, Melissa J</creatorcontrib><creatorcontrib>Cavanaugh, Benjamin</creatorcontrib><creatorcontrib>Abbo, Anita</creatorcontrib><creatorcontrib>Chung, Charles S</creatorcontrib><title>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</title><title>Journal of visualized experiments</title><addtitle>J Vis Exp</addtitle><description>Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.</description><subject>Actin Cytoskeleton</subject><subject>Animals</subject><subject>Blood Pressure</subject><subject>Heart</subject><subject>Heart Failure</subject><subject>Myocardium</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtKw0AYRgdRbK19BZmN4CY6ySRz2SmhaqEiSAV34Z-bRqaZOpOAvr2treLq-xaHszgITXNySbnMr1gpuDxA41yWJCOCvxz--yN0ktI7IawglThGI8oEZ5LKMbp-sPoNulaDx3Xo-hg8Dg4_WQ-f0Lehw0Nqu1c873rQPa4hmhY0XkZQVg8e7Ck6cuCTne53gp5vZ8v6Pls83s3rm0WmKRF9ZmxVcSm5UVBCVdlCF6VQ2gDn1mllWQGaAXHUOaW4o9w4pcEwYMQ4YhidoIuddx3Dx2BT36zapK330NkwpKbgYtOh4HyLnu9QHUNK0bpmHdsVxK8mJ802VvMTa8Od7ZWDWlnzR_3Wod9atmUD</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>Bukowski, Melissa J</creator><creator>Cavanaugh, Benjamin</creator><creator>Abbo, Anita</creator><creator>Chung, Charles S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230217</creationdate><title>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</title><author>Bukowski, Melissa J ; Cavanaugh, Benjamin ; Abbo, Anita ; Chung, Charles S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-de557997dba4a55e2c248bcda77efcbe62ac6a0f3ffbb7f37dfbcad6a60df0d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin Cytoskeleton</topic><topic>Animals</topic><topic>Blood Pressure</topic><topic>Heart</topic><topic>Heart Failure</topic><topic>Myocardium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukowski, Melissa J</creatorcontrib><creatorcontrib>Cavanaugh, Benjamin</creatorcontrib><creatorcontrib>Abbo, Anita</creatorcontrib><creatorcontrib>Chung, Charles S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of visualized experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bukowski, Melissa J</au><au>Cavanaugh, Benjamin</au><au>Abbo, Anita</au><au>Chung, Charles S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Control of Relaxation using Intact Cardiac Trabeculae</atitle><jtitle>Journal of visualized experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2023-02-17</date><risdate>2023</risdate><issue>192</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.</abstract><cop>United States</cop><pmid>36876939</pmid><doi>10.3791/64879</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of visualized experiments, 2023-02 (192)
issn 1940-087X
1940-087X
language eng
recordid cdi_proquest_miscellaneous_2783792776
source Journal of Visualized Experiments : JoVE
subjects Actin Cytoskeleton
Animals
Blood Pressure
Heart
Heart Failure
Myocardium
title Mechanical Control of Relaxation using Intact Cardiac Trabeculae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Control%20of%20Relaxation%20using%20Intact%20Cardiac%20Trabeculae&rft.jtitle=Journal%20of%20visualized%20experiments&rft.au=Bukowski,%20Melissa%20J&rft.date=2023-02-17&rft.issue=192&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/64879&rft_dat=%3Cproquest_223%3E2783792776%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783792776&rft_id=info:pmid/36876939&rfr_iscdi=true