Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations
Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecula...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2023-03, Vol.150, p.111505-111505, Article 111505 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111505 |
---|---|
container_issue | |
container_start_page | 111505 |
container_title | Journal of biomechanics |
container_volume | 150 |
creator | Ke, Renjie Kucukal, Erdem Gurkan, Umut A. Li, Bo |
description | Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid–structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed. |
doi_str_mv | 10.1016/j.jbiomech.2023.111505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2783494852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192902300074X</els_id><sourcerecordid>2783494852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4909ee8adf45ca4a5e45cfee73eb760d5cc83cb89a04ccc9ba0e924201ac2bc63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCX6gsceGSxV_58A20AopUiQucLWcyoY4Se7EdRDnw23F2Ww5cOI1kPTOvZx5Crjnbc8abN9N-6l1YEO72ggm555zXrH5CdrxrZSVkx56SHWOCV1podkEuU5oYY61q9XNyIZuuaXUtduT34c5GCxmj-2WzC56GkY6uj8EjZOfpMYYjxuww0f6eOp_xW7QZB7o4iKEa59UNDij-LJRb0OdErR_o6b1KOa6Q14inxi1nS0huWedTWHpBno12TvjyoV6Rrx_efzncVLefP346vLutQCqZK6WZRuzsMKoarLI1ljoithL7tmFDDdBJ6DttmQIA3VuGWijBuAXRQyOvyOvz3LLO9xVTNotLgPNsPYY1GdF2UmnV1aKgr_5Bp7BGX363UTXXTDV1oZozVY6QUsTRHMv6Nt4bzsxmyEzm0ZDZDJmzodJ4_TB-7Rcc_rY9KinA2zOA5R4_HEaTwKEHHFwsSswQ3P8y_gC4iKmu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785190465</pqid></control><display><type>article</type><title>Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Ke, Renjie ; Kucukal, Erdem ; Gurkan, Umut A. ; Li, Bo</creator><creatorcontrib>Ke, Renjie ; Kucukal, Erdem ; Gurkan, Umut A. ; Li, Bo</creatorcontrib><description>Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid–structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2023.111505</identifier><identifier>PMID: 36867952</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Cell Adhesion ; Cell adhesion & migration ; Cell culture ; Computer applications ; Conformation ; Constitutive models ; Cytoplasm ; Deformation ; Deformation effects ; Entanglement ; Erythrocytes ; Erythrocytes - metabolism ; Extracellular matrix ; Extracellular Matrix - metabolism ; Fibronectin ; Fibronectins - analysis ; Fibronectins - chemistry ; Fibronectins - metabolism ; Finite element method ; Fluid-structure interaction ; Integrated framework ; Material properties ; Mechanical Phenomena ; Mesh-free ; Methods ; Micro-fluidic experiments ; Microfluidics ; Molecular Conformation ; Molecular structure ; Numerical prediction ; Optimization algorithms ; Physiology ; Red blood cells ; Rheological properties ; Robustness (mathematics) ; Simulation ; Software ; Stress distribution ; Stress measurement ; Stress, Mechanical ; Viscoelasticity</subject><ispartof>Journal of biomechanics, 2023-03, Vol.150, p.111505-111505, Article 111505</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-4909ee8adf45ca4a5e45cfee73eb760d5cc83cb89a04ccc9ba0e924201ac2bc63</cites><orcidid>0000-0001-6908-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2785190465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36867952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ke, Renjie</creatorcontrib><creatorcontrib>Kucukal, Erdem</creatorcontrib><creatorcontrib>Gurkan, Umut A.</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><title>Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid–structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed.</description><subject>Cell Adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Computer applications</subject><subject>Conformation</subject><subject>Constitutive models</subject><subject>Cytoplasm</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Entanglement</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibronectin</subject><subject>Fibronectins - analysis</subject><subject>Fibronectins - chemistry</subject><subject>Fibronectins - metabolism</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Integrated framework</subject><subject>Material properties</subject><subject>Mechanical Phenomena</subject><subject>Mesh-free</subject><subject>Methods</subject><subject>Micro-fluidic experiments</subject><subject>Microfluidics</subject><subject>Molecular Conformation</subject><subject>Molecular structure</subject><subject>Numerical prediction</subject><subject>Optimization algorithms</subject><subject>Physiology</subject><subject>Red blood cells</subject><subject>Rheological properties</subject><subject>Robustness (mathematics)</subject><subject>Simulation</subject><subject>Software</subject><subject>Stress distribution</subject><subject>Stress measurement</subject><subject>Stress, Mechanical</subject><subject>Viscoelasticity</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EotvCX6gsceGSxV_58A20AopUiQucLWcyoY4Se7EdRDnw23F2Ww5cOI1kPTOvZx5Crjnbc8abN9N-6l1YEO72ggm555zXrH5CdrxrZSVkx56SHWOCV1podkEuU5oYY61q9XNyIZuuaXUtduT34c5GCxmj-2WzC56GkY6uj8EjZOfpMYYjxuww0f6eOp_xW7QZB7o4iKEa59UNDij-LJRb0OdErR_o6b1KOa6Q14inxi1nS0huWedTWHpBno12TvjyoV6Rrx_efzncVLefP346vLutQCqZK6WZRuzsMKoarLI1ljoithL7tmFDDdBJ6DttmQIA3VuGWijBuAXRQyOvyOvz3LLO9xVTNotLgPNsPYY1GdF2UmnV1aKgr_5Bp7BGX363UTXXTDV1oZozVY6QUsTRHMv6Nt4bzsxmyEzm0ZDZDJmzodJ4_TB-7Rcc_rY9KinA2zOA5R4_HEaTwKEHHFwsSswQ3P8y_gC4iKmu</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Ke, Renjie</creator><creator>Kucukal, Erdem</creator><creator>Gurkan, Umut A.</creator><creator>Li, Bo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6908-9769</orcidid></search><sort><creationdate>202303</creationdate><title>Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations</title><author>Ke, Renjie ; Kucukal, Erdem ; Gurkan, Umut A. ; Li, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4909ee8adf45ca4a5e45cfee73eb760d5cc83cb89a04ccc9ba0e924201ac2bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Computer applications</topic><topic>Conformation</topic><topic>Constitutive models</topic><topic>Cytoplasm</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Entanglement</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibronectin</topic><topic>Fibronectins - analysis</topic><topic>Fibronectins - chemistry</topic><topic>Fibronectins - metabolism</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Integrated framework</topic><topic>Material properties</topic><topic>Mechanical Phenomena</topic><topic>Mesh-free</topic><topic>Methods</topic><topic>Micro-fluidic experiments</topic><topic>Microfluidics</topic><topic>Molecular Conformation</topic><topic>Molecular structure</topic><topic>Numerical prediction</topic><topic>Optimization algorithms</topic><topic>Physiology</topic><topic>Red blood cells</topic><topic>Rheological properties</topic><topic>Robustness (mathematics)</topic><topic>Simulation</topic><topic>Software</topic><topic>Stress distribution</topic><topic>Stress measurement</topic><topic>Stress, Mechanical</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Renjie</creatorcontrib><creatorcontrib>Kucukal, Erdem</creatorcontrib><creatorcontrib>Gurkan, Umut A.</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Renjie</au><au>Kucukal, Erdem</au><au>Gurkan, Umut A.</au><au>Li, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2023-03</date><risdate>2023</risdate><volume>150</volume><spage>111505</spage><epage>111505</epage><pages>111505-111505</pages><artnum>111505</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid–structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36867952</pmid><doi>10.1016/j.jbiomech.2023.111505</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6908-9769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2023-03, Vol.150, p.111505-111505, Article 111505 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_2783494852 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Cell Adhesion Cell adhesion & migration Cell culture Computer applications Conformation Constitutive models Cytoplasm Deformation Deformation effects Entanglement Erythrocytes Erythrocytes - metabolism Extracellular matrix Extracellular Matrix - metabolism Fibronectin Fibronectins - analysis Fibronectins - chemistry Fibronectins - metabolism Finite element method Fluid-structure interaction Integrated framework Material properties Mechanical Phenomena Mesh-free Methods Micro-fluidic experiments Microfluidics Molecular Conformation Molecular structure Numerical prediction Optimization algorithms Physiology Red blood cells Rheological properties Robustness (mathematics) Simulation Software Stress distribution Stress measurement Stress, Mechanical Viscoelasticity |
title | Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20fibronectin%20properties%20by%20integrated%20micro-fluidic%20experiments%20and%20fluid-structure%20interaction%20simulations&rft.jtitle=Journal%20of%20biomechanics&rft.au=Ke,%20Renjie&rft.date=2023-03&rft.volume=150&rft.spage=111505&rft.epage=111505&rft.pages=111505-111505&rft.artnum=111505&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2023.111505&rft_dat=%3Cproquest_cross%3E2783494852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785190465&rft_id=info:pmid/36867952&rft_els_id=S002192902300074X&rfr_iscdi=true |