Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis

Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kidney international 2023-06, Vol.103 (6), p.1077-1092
Hauptverfasser: McDaniels, Jennifer M., Shetty, Amol C., Kuscu, Cem, Kuscu, Canan, Bardhi, Elissa, Rousselle, Thomas, Drachenberg, Cinthia, Talwar, Manish, Eason, James D., Muthukumar, Thangamani, Maluf, Daniel G., Mas, Valeria R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1092
container_issue 6
container_start_page 1077
container_title Kidney international
container_volume 103
creator McDaniels, Jennifer M.
Shetty, Amol C.
Kuscu, Cem
Kuscu, Canan
Bardhi, Elissa
Rousselle, Thomas
Drachenberg, Cinthia
Talwar, Manish
Eason, James D.
Muthukumar, Thangamani
Maluf, Daniel G.
Mas, Valeria R.
description Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients. [Display omitted]
doi_str_mv 10.1016/j.kint.2023.02.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2783493012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0085253823001424</els_id><sourcerecordid>2783493012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3ff0086ca5afffd82bf3983bff397c1672bda82204281377627545ae2e2fb9853</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERZfCH-CAfOSS4I848UpcUFU-pEocWs6W44yr2TrOYjuIXvrbcbQtR06jkZ559c5DyDvOWs54__HQ3mMsrWBCtky0jOsXZMeVkA0flHpJdoxp1Qgl9Tl5nfOB1X0v2StyLnvdy67rduTxBuNdABpXFwBpSTZml_BYlhldphMEjGALZOqW-RjgD8V5XiNQGyd6j1OEB-ogBFqbQLKu4BI3NpaE41pqOC3LM2hDWO6S9YV6HNOSMb8hZ96GDG-f5gX5-eXq9vJbc_3j6_fLz9eN6xgrjfS-du-dVdZ7P2kxernXcvR1DI73gxgnq4VgndBcDkMvBtUpCwKEH_dayQvy4ZR7TMuvFXIxM-att42wrNmIQcuuuuGiouKEutowJ_DmmHC26cFwZjbv5mA272bzbpgw1Xs9ev-Uv44zTP9OnkVX4NMJgPrlb4RkskOIDiZM4IqZFvxf_l94lpeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783493012</pqid></control><display><type>article</type><title>Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>McDaniels, Jennifer M. ; Shetty, Amol C. ; Kuscu, Cem ; Kuscu, Canan ; Bardhi, Elissa ; Rousselle, Thomas ; Drachenberg, Cinthia ; Talwar, Manish ; Eason, James D. ; Muthukumar, Thangamani ; Maluf, Daniel G. ; Mas, Valeria R.</creator><creatorcontrib>McDaniels, Jennifer M. ; Shetty, Amol C. ; Kuscu, Cem ; Kuscu, Canan ; Bardhi, Elissa ; Rousselle, Thomas ; Drachenberg, Cinthia ; Talwar, Manish ; Eason, James D. ; Muthukumar, Thangamani ; Maluf, Daniel G. ; Mas, Valeria R.</creatorcontrib><description>Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients. [Display omitted]</description><identifier>ISSN: 0085-2538</identifier><identifier>EISSN: 1523-1755</identifier><identifier>DOI: 10.1016/j.kint.2023.02.018</identifier><identifier>PMID: 36863444</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allografts - pathology ; chronic kidney injury ; Fibrosis ; fibrosis development ; Gene Expression Profiling ; Humans ; Kidney - pathology ; Kidney Diseases - pathology ; kidney transplantation ; Kidney Transplantation - adverse effects ; snRNA-seq ; Transcriptome</subject><ispartof>Kidney international, 2023-06, Vol.103 (6), p.1077-1092</ispartof><rights>2023 International Society of Nephrology</rights><rights>Copyright © 2023 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3ff0086ca5afffd82bf3983bff397c1672bda82204281377627545ae2e2fb9853</citedby><cites>FETCH-LOGICAL-c400t-3ff0086ca5afffd82bf3983bff397c1672bda82204281377627545ae2e2fb9853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36863444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDaniels, Jennifer M.</creatorcontrib><creatorcontrib>Shetty, Amol C.</creatorcontrib><creatorcontrib>Kuscu, Cem</creatorcontrib><creatorcontrib>Kuscu, Canan</creatorcontrib><creatorcontrib>Bardhi, Elissa</creatorcontrib><creatorcontrib>Rousselle, Thomas</creatorcontrib><creatorcontrib>Drachenberg, Cinthia</creatorcontrib><creatorcontrib>Talwar, Manish</creatorcontrib><creatorcontrib>Eason, James D.</creatorcontrib><creatorcontrib>Muthukumar, Thangamani</creatorcontrib><creatorcontrib>Maluf, Daniel G.</creatorcontrib><creatorcontrib>Mas, Valeria R.</creatorcontrib><title>Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis</title><title>Kidney international</title><addtitle>Kidney Int</addtitle><description>Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients. [Display omitted]</description><subject>Allografts - pathology</subject><subject>chronic kidney injury</subject><subject>Fibrosis</subject><subject>fibrosis development</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Kidney - pathology</subject><subject>Kidney Diseases - pathology</subject><subject>kidney transplantation</subject><subject>Kidney Transplantation - adverse effects</subject><subject>snRNA-seq</subject><subject>Transcriptome</subject><issn>0085-2538</issn><issn>1523-1755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERZfCH-CAfOSS4I848UpcUFU-pEocWs6W44yr2TrOYjuIXvrbcbQtR06jkZ559c5DyDvOWs54__HQ3mMsrWBCtky0jOsXZMeVkA0flHpJdoxp1Qgl9Tl5nfOB1X0v2StyLnvdy67rduTxBuNdABpXFwBpSTZml_BYlhldphMEjGALZOqW-RjgD8V5XiNQGyd6j1OEB-ogBFqbQLKu4BI3NpaE41pqOC3LM2hDWO6S9YV6HNOSMb8hZ96GDG-f5gX5-eXq9vJbc_3j6_fLz9eN6xgrjfS-du-dVdZ7P2kxernXcvR1DI73gxgnq4VgndBcDkMvBtUpCwKEH_dayQvy4ZR7TMuvFXIxM-att42wrNmIQcuuuuGiouKEutowJ_DmmHC26cFwZjbv5mA272bzbpgw1Xs9ev-Uv44zTP9OnkVX4NMJgPrlb4RkskOIDiZM4IqZFvxf_l94lpeM</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>McDaniels, Jennifer M.</creator><creator>Shetty, Amol C.</creator><creator>Kuscu, Cem</creator><creator>Kuscu, Canan</creator><creator>Bardhi, Elissa</creator><creator>Rousselle, Thomas</creator><creator>Drachenberg, Cinthia</creator><creator>Talwar, Manish</creator><creator>Eason, James D.</creator><creator>Muthukumar, Thangamani</creator><creator>Maluf, Daniel G.</creator><creator>Mas, Valeria R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202306</creationdate><title>Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis</title><author>McDaniels, Jennifer M. ; Shetty, Amol C. ; Kuscu, Cem ; Kuscu, Canan ; Bardhi, Elissa ; Rousselle, Thomas ; Drachenberg, Cinthia ; Talwar, Manish ; Eason, James D. ; Muthukumar, Thangamani ; Maluf, Daniel G. ; Mas, Valeria R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3ff0086ca5afffd82bf3983bff397c1672bda82204281377627545ae2e2fb9853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Allografts - pathology</topic><topic>chronic kidney injury</topic><topic>Fibrosis</topic><topic>fibrosis development</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Kidney - pathology</topic><topic>Kidney Diseases - pathology</topic><topic>kidney transplantation</topic><topic>Kidney Transplantation - adverse effects</topic><topic>snRNA-seq</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDaniels, Jennifer M.</creatorcontrib><creatorcontrib>Shetty, Amol C.</creatorcontrib><creatorcontrib>Kuscu, Cem</creatorcontrib><creatorcontrib>Kuscu, Canan</creatorcontrib><creatorcontrib>Bardhi, Elissa</creatorcontrib><creatorcontrib>Rousselle, Thomas</creatorcontrib><creatorcontrib>Drachenberg, Cinthia</creatorcontrib><creatorcontrib>Talwar, Manish</creatorcontrib><creatorcontrib>Eason, James D.</creatorcontrib><creatorcontrib>Muthukumar, Thangamani</creatorcontrib><creatorcontrib>Maluf, Daniel G.</creatorcontrib><creatorcontrib>Mas, Valeria R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Kidney international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDaniels, Jennifer M.</au><au>Shetty, Amol C.</au><au>Kuscu, Cem</au><au>Kuscu, Canan</au><au>Bardhi, Elissa</au><au>Rousselle, Thomas</au><au>Drachenberg, Cinthia</au><au>Talwar, Manish</au><au>Eason, James D.</au><au>Muthukumar, Thangamani</au><au>Maluf, Daniel G.</au><au>Mas, Valeria R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis</atitle><jtitle>Kidney international</jtitle><addtitle>Kidney Int</addtitle><date>2023-06</date><risdate>2023</risdate><volume>103</volume><issue>6</issue><spage>1077</spage><epage>1092</epage><pages>1077-1092</pages><issn>0085-2538</issn><eissn>1523-1755</eissn><abstract>Chronic allograft dysfunction (CAD), characterized histologically by interstitial fibrosis and tubular atrophy, is the major cause of kidney allograft loss. Here, using single nuclei RNA sequencing and transcriptome analysis, we identified the origin, functional heterogeneity, and regulation of fibrosis-forming cells in kidney allografts with CAD. A robust technique was used to isolate individual nuclei from kidney allograft biopsies and successfully profiled 23,980 nuclei from five kidney transplant recipients with CAD and 17,913 nuclei from three patients with normal allograft function. Our analysis revealed two distinct states of fibrosis in CAD; low and high extracellular matrix (ECM) with distinct kidney cell subclusters, immune cell types, and transcriptional profiles. Imaging mass cytometry analysis confirmed increased ECM deposition at the protein level. Proximal tubular cells transitioned to an injured mixed tubular (MT1) phenotype comprised of activated fibroblasts and myofibroblast markers, generated provisional ECM which recruited inflammatory cells, and served as the main driver of fibrosis. MT1 cells in the high ECM state achieved replicative repair evidenced by dedifferentiation and nephrogenic transcriptional signatures. MT1 in the low ECM state showed decreased apoptosis, decreased cycling tubular cells, and severe metabolic dysfunction, limiting the potential for repair. Activated B, T and plasma cells were increased in the high ECM state, while macrophage subtypes were increased in the low ECM state. Intercellular communication between kidney parenchymal cells and donor-derived macrophages, detected several years post-transplantation, played a key role in injury propagation. Thus, our study identified novel molecular targets for interventions aimed to ameliorate or prevent allograft fibrogenesis in kidney transplant recipients. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36863444</pmid><doi>10.1016/j.kint.2023.02.018</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0085-2538
ispartof Kidney international, 2023-06, Vol.103 (6), p.1077-1092
issn 0085-2538
1523-1755
language eng
recordid cdi_proquest_miscellaneous_2783493012
source MEDLINE; Alma/SFX Local Collection
subjects Allografts - pathology
chronic kidney injury
Fibrosis
fibrosis development
Gene Expression Profiling
Humans
Kidney - pathology
Kidney Diseases - pathology
kidney transplantation
Kidney Transplantation - adverse effects
snRNA-seq
Transcriptome
title Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20nuclei%20transcriptomics%20delineates%20complex%20immune%20and%20kidney%20cell%20interactions%20contributing%20to%20kidney%20allograft%20fibrosis&rft.jtitle=Kidney%20international&rft.au=McDaniels,%20Jennifer%20M.&rft.date=2023-06&rft.volume=103&rft.issue=6&rft.spage=1077&rft.epage=1092&rft.pages=1077-1092&rft.issn=0085-2538&rft.eissn=1523-1755&rft_id=info:doi/10.1016/j.kint.2023.02.018&rft_dat=%3Cproquest_cross%3E2783493012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783493012&rft_id=info:pmid/36863444&rft_els_id=S0085253823001424&rfr_iscdi=true