Learning monotone DNF from a teacher that almost does not answer membership queries
We present results concerning the learning of Monotone DNF (MDNF) from Incomplete Membership Queries and Equivalence Queries. Our main result is a new algorithm that allows efficient learning of MDNF using Equivalence Queries and Incomplete Membership Queries with probability of p = 1 - 1/poly(n, t)...
Gespeichert in:
Veröffentlicht in: | Journal of machine learning research 2003-01, Vol.3 (1), p.49-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Journal of machine learning research |
container_volume | 3 |
creator | Bshouty, N H Eiron, N |
description | We present results concerning the learning of Monotone DNF (MDNF) from Incomplete Membership Queries and Equivalence Queries. Our main result is a new algorithm that allows efficient learning of MDNF using Equivalence Queries and Incomplete Membership Queries with probability of p = 1 - 1/poly(n, t) of failing. Our algorithm is expected to make O(( tn/1-p)2) queries, when learning a MDNF formula with t terms over n variables. Note that this is polynomial for any failure probability p = 1-1/poly(n, t). The algorithm's running time is also polynomial in t, n, and 1/(1 - p). In a sense this is the best possible, as learning with p = 1 - 1/w(poly(n, t)) would imply learning MDNF, and thus also DNF, from equivalence queries alone. |
doi_str_mv | 10.1162/153244303768966094 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27830710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27830710</sourcerecordid><originalsourceid>FETCH-LOGICAL-p184t-f222ead657c59a324b97f4bb4530d9875b7707a3315c75c26f9db20f1ac8fd3b3</originalsourceid><addsrcrecordid>eNotjj1PwzAYhD2ARCn8ASZPbAF_Ox5RoRQpggGYK9t5TYISu9iu-PsEwXTSc6e7Q-iKkhtKFbulkjMhOOFatUYpYsQJWv3CZqHyDJ2X8kkI1ZKpFXrtwOY4xg88p5hqioDvn7c45DRjiytYP0DGdbAV22lOpeI-QcFLFNtYvhdvhtlBLsN4wF9HyCOUC3Qa7FTg8l_X6H378LbZNd3L49PmrmsOtBW1CYwxsL2S2ktjl8_O6CCcE5KT3rRaOq2JtpxT6bX0TAXTO0YCtb4NPXd8ja7_eg85LdOl7uexeJgmGyEdy57plhNNCf8B1oVSNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27830710</pqid></control><display><type>article</type><title>Learning monotone DNF from a teacher that almost does not answer membership queries</title><source>Business Source Complete</source><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bshouty, N H ; Eiron, N</creator><creatorcontrib>Bshouty, N H ; Eiron, N</creatorcontrib><description>We present results concerning the learning of Monotone DNF (MDNF) from Incomplete Membership Queries and Equivalence Queries. Our main result is a new algorithm that allows efficient learning of MDNF using Equivalence Queries and Incomplete Membership Queries with probability of p = 1 - 1/poly(n, t) of failing. Our algorithm is expected to make O(( tn/1-p)2) queries, when learning a MDNF formula with t terms over n variables. Note that this is polynomial for any failure probability p = 1-1/poly(n, t). The algorithm's running time is also polynomial in t, n, and 1/(1 - p). In a sense this is the best possible, as learning with p = 1 - 1/w(poly(n, t)) would imply learning MDNF, and thus also DNF, from equivalence queries alone.</description><identifier>ISSN: 1532-4435</identifier><identifier>DOI: 10.1162/153244303768966094</identifier><language>eng</language><ispartof>Journal of machine learning research, 2003-01, Vol.3 (1), p.49-57</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Bshouty, N H</creatorcontrib><creatorcontrib>Eiron, N</creatorcontrib><title>Learning monotone DNF from a teacher that almost does not answer membership queries</title><title>Journal of machine learning research</title><description>We present results concerning the learning of Monotone DNF (MDNF) from Incomplete Membership Queries and Equivalence Queries. Our main result is a new algorithm that allows efficient learning of MDNF using Equivalence Queries and Incomplete Membership Queries with probability of p = 1 - 1/poly(n, t) of failing. Our algorithm is expected to make O(( tn/1-p)2) queries, when learning a MDNF formula with t terms over n variables. Note that this is polynomial for any failure probability p = 1-1/poly(n, t). The algorithm's running time is also polynomial in t, n, and 1/(1 - p). In a sense this is the best possible, as learning with p = 1 - 1/w(poly(n, t)) would imply learning MDNF, and thus also DNF, from equivalence queries alone.</description><issn>1532-4435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjj1PwzAYhD2ARCn8ASZPbAF_Ox5RoRQpggGYK9t5TYISu9iu-PsEwXTSc6e7Q-iKkhtKFbulkjMhOOFatUYpYsQJWv3CZqHyDJ2X8kkI1ZKpFXrtwOY4xg88p5hqioDvn7c45DRjiytYP0DGdbAV22lOpeI-QcFLFNtYvhdvhtlBLsN4wF9HyCOUC3Qa7FTg8l_X6H378LbZNd3L49PmrmsOtBW1CYwxsL2S2ktjl8_O6CCcE5KT3rRaOq2JtpxT6bX0TAXTO0YCtb4NPXd8ja7_eg85LdOl7uexeJgmGyEdy57plhNNCf8B1oVSNg</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Bshouty, N H</creator><creator>Eiron, N</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030101</creationdate><title>Learning monotone DNF from a teacher that almost does not answer membership queries</title><author>Bshouty, N H ; Eiron, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p184t-f222ead657c59a324b97f4bb4530d9875b7707a3315c75c26f9db20f1ac8fd3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bshouty, N H</creatorcontrib><creatorcontrib>Eiron, N</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bshouty, N H</au><au>Eiron, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning monotone DNF from a teacher that almost does not answer membership queries</atitle><jtitle>Journal of machine learning research</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>3</volume><issue>1</issue><spage>49</spage><epage>57</epage><pages>49-57</pages><issn>1532-4435</issn><abstract>We present results concerning the learning of Monotone DNF (MDNF) from Incomplete Membership Queries and Equivalence Queries. Our main result is a new algorithm that allows efficient learning of MDNF using Equivalence Queries and Incomplete Membership Queries with probability of p = 1 - 1/poly(n, t) of failing. Our algorithm is expected to make O(( tn/1-p)2) queries, when learning a MDNF formula with t terms over n variables. Note that this is polynomial for any failure probability p = 1-1/poly(n, t). The algorithm's running time is also polynomial in t, n, and 1/(1 - p). In a sense this is the best possible, as learning with p = 1 - 1/w(poly(n, t)) would imply learning MDNF, and thus also DNF, from equivalence queries alone.</abstract><doi>10.1162/153244303768966094</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-4435 |
ispartof | Journal of machine learning research, 2003-01, Vol.3 (1), p.49-57 |
issn | 1532-4435 |
language | eng |
recordid | cdi_proquest_miscellaneous_27830710 |
source | Business Source Complete; ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals |
title | Learning monotone DNF from a teacher that almost does not answer membership queries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20monotone%20DNF%20from%20a%20teacher%20that%20almost%20does%20not%20answer%20membership%20queries&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Bshouty,%20N%20H&rft.date=2003-01-01&rft.volume=3&rft.issue=1&rft.spage=49&rft.epage=57&rft.pages=49-57&rft.issn=1532-4435&rft_id=info:doi/10.1162/153244303768966094&rft_dat=%3Cproquest%3E27830710%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27830710&rft_id=info:pmid/&rfr_iscdi=true |