Large parameter cases of the Gauss hypergeometric function
We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner, Krawtchouk, etc.), which results are already available and which cases need more atte...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2003-04, Vol.153 (1-2), p.441-462 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 1-2 |
container_start_page | 441 |
container_title | Journal of computational and applied mathematics |
container_volume | 153 |
creator | Temme, Nico M |
description | We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner, Krawtchouk, etc.), which results are already available and which cases need more attention. We also consider a few examples of 3F2 functions of unit argument, to explain which difficulties arise in these cases, when standard integrals or differential equations are not available. |
doi_str_mv | 10.1016/S0377-0427(02)00627-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27830177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702006271</els_id><sourcerecordid>27830177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-ca5b8c1fe4232fb044c5cd6ba2d14bbe0b772407f8931136930633f3b49144183</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwE5CygGAInD8SJywIVVCQKjEAs-U4Z2qUJsFOkPrvcVsEI9Mtz91770PIKYUrCjS_fgEuZQqCyQtglwA5kyndIxNayDKlUhb7ZPKLHJKjED4gUiUVE3Kz0P4dk157vcIBfWJ0wJB0NhmWmMz1GEKyXPcYoS4C3pnEjq0ZXNcekwOrm4AnP3NK3h7uX2eP6eJ5_jS7W6Qm43xIjc6qwlCLgnFmKxDCZKbOK81qKqoKoZKSCZC2KDmlPC855JxbXon4oKAFn5Lz3d3ed58jhkGtXDDYNLrFbgyKyYJDrBnBbAca34Xg0areu5X2a0VBbUyprSm10aCAqa0pRePe2U-ADkY31uvWuPC3LCQFEbtMye2Ow9j2y6FXwThsDdbOoxlU3bl_kr4B0657xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27830177</pqid></control><display><type>article</type><title>Large parameter cases of the Gauss hypergeometric function</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Temme, Nico M</creator><creatorcontrib>Temme, Nico M</creatorcontrib><description>We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner, Krawtchouk, etc.), which results are already available and which cases need more attention. We also consider a few examples of 3F2 functions of unit argument, to explain which difficulties arise in these cases, when standard integrals or differential equations are not available.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00627-1</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximations and expansions ; Asymptotic expansion ; Exact sciences and technology ; Functions of a complex variable ; Gauss hypergeometric function ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Special functions</subject><ispartof>Journal of computational and applied mathematics, 2003-04, Vol.153 (1-2), p.441-462</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-ca5b8c1fe4232fb044c5cd6ba2d14bbe0b772407f8931136930633f3b49144183</citedby><cites>FETCH-LOGICAL-c533t-ca5b8c1fe4232fb044c5cd6ba2d14bbe0b772407f8931136930633f3b49144183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0427(02)00627-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3549,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14710453$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Temme, Nico M</creatorcontrib><title>Large parameter cases of the Gauss hypergeometric function</title><title>Journal of computational and applied mathematics</title><description>We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner, Krawtchouk, etc.), which results are already available and which cases need more attention. We also consider a few examples of 3F2 functions of unit argument, to explain which difficulties arise in these cases, when standard integrals or differential equations are not available.</description><subject>Approximations and expansions</subject><subject>Asymptotic expansion</subject><subject>Exact sciences and technology</subject><subject>Functions of a complex variable</subject><subject>Gauss hypergeometric function</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwE5CygGAInD8SJywIVVCQKjEAs-U4Z2qUJsFOkPrvcVsEI9Mtz91770PIKYUrCjS_fgEuZQqCyQtglwA5kyndIxNayDKlUhb7ZPKLHJKjED4gUiUVE3Kz0P4dk157vcIBfWJ0wJB0NhmWmMz1GEKyXPcYoS4C3pnEjq0ZXNcekwOrm4AnP3NK3h7uX2eP6eJ5_jS7W6Qm43xIjc6qwlCLgnFmKxDCZKbOK81qKqoKoZKSCZC2KDmlPC855JxbXon4oKAFn5Lz3d3ed58jhkGtXDDYNLrFbgyKyYJDrBnBbAca34Xg0areu5X2a0VBbUyprSm10aCAqa0pRePe2U-ADkY31uvWuPC3LCQFEbtMye2Ow9j2y6FXwThsDdbOoxlU3bl_kr4B0657xQ</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Temme, Nico M</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030401</creationdate><title>Large parameter cases of the Gauss hypergeometric function</title><author>Temme, Nico M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-ca5b8c1fe4232fb044c5cd6ba2d14bbe0b772407f8931136930633f3b49144183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Approximations and expansions</topic><topic>Asymptotic expansion</topic><topic>Exact sciences and technology</topic><topic>Functions of a complex variable</topic><topic>Gauss hypergeometric function</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Temme, Nico M</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Temme, Nico M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large parameter cases of the Gauss hypergeometric function</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>153</volume><issue>1-2</issue><spage>441</spage><epage>462</epage><pages>441-462</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner, Krawtchouk, etc.), which results are already available and which cases need more attention. We also consider a few examples of 3F2 functions of unit argument, to explain which difficulties arise in these cases, when standard integrals or differential equations are not available.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00627-1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2003-04, Vol.153 (1-2), p.441-462 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_27830177 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Approximations and expansions Asymptotic expansion Exact sciences and technology Functions of a complex variable Gauss hypergeometric function Mathematical analysis Mathematics Sciences and techniques of general use Special functions |
title | Large parameter cases of the Gauss hypergeometric function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20parameter%20cases%20of%20the%20Gauss%20hypergeometric%20function&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Temme,%20Nico%20M&rft.date=2003-04-01&rft.volume=153&rft.issue=1-2&rft.spage=441&rft.epage=462&rft.pages=441-462&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00627-1&rft_dat=%3Cproquest_cross%3E27830177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27830177&rft_id=info:pmid/&rft_els_id=S0377042702006271&rfr_iscdi=true |